Recent studies have implicated the signaling factor Sonic hedgehog (Shh) as a negative regulator of pancreatic development, but as a positive regulator of pancreas function in amniotes [1-4]. Here, using genetic analysis, we show that specification of the pancreas in the teleost embryo requires the activity of Hh proteins. Zebrafish embryos compromised in Hh signaling exhibit disruption in the expression of the pancreas-specifying homeobox gene pdx-1 and concomitantly show almost complete absence of the endocrine pancreas. Reciprocally, ubiquitous activation of the Hh pathway in wild-type embryos causes ectopic induction of endodermal pdx-1 expression and the differentiation of supernumerary endocrine cells. Our results suggest that Hh proteins influence pancreas specification via inductive interactions from the axial midline rather than through their localized expression in the endodermal cells themselves.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0960-9822(01)00402-x | DOI Listing |
Sci Adv
January 2025
Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
Tissue-specific endothelial cells (ECs) are critical for the homeostasis of pancreatic islets and most other tissues. In vitro recapitulation of islet biology and therapeutic islet transplantation both require adequate vascularization, which remains a challenge. Using human reprogrammed vascular ECs (R-VECs), human islets were functionally vascularized in vitro, demonstrating responsive, dynamic glucose-stimulated insulin secretion and Ca influx.
View Article and Find Full Text PDFWorld J Surg Oncol
January 2025
Department of Hepatobiliary and Pancreas, Affiliated Hospital of Qingdao University, NO.1677 Wutaishan Road, Qingdao, Shandong Province, 266555, China.
Background: With the rising diagnostic rate of gallbladder polypoid lesions (GPLs), differentiating benign cholesterol polyps from gallbladder adenomas with a higher preoperative malignancy risk is crucial. This study aimed to establish a preoperative prediction model capable of accurately distinguishing between gallbladder adenomas and cholesterol polyps using machine learning algorithms.
Materials And Methods: We retrospectively analysed the patients' clinical baseline data, serological indicators, and ultrasound imaging data.
Cell Mol Life Sci
January 2025
Department of Endocrinology, Central South University Third Xiangya Hospital, Changsha, China.
Pancreatic β-cell damage is a critical pathological mechanism in the progression of obese type 2 diabetes mellitus (T2DM). However, the exact underlying mechanism remains unclear. We established an obese T2DM mouse model via high-fat diet feeding.
View Article and Find Full Text PDFAging (Albany NY)
January 2025
Department of Pathology, Yale University School of Medicine, New Haven, CT 06519, USA.
Studies of the aging transcriptome focus on genes that change with age. But what can we learn from age-invariant genes-those that remain unchanged throughout the aging process? These genes also have a practical application: they can serve as reference genes in expression studies. Reference genes have mostly been identified and validated in young organisms, and no systematic investigation has been done across the lifespan.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Department of General Surgery, Pancreas and Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
The primary node molecules in the cell signaling network in cancer tissues are maladjusted and mutated in comparison to normal tissues, which promotes the occurrence and progression of cancer. Pancreatic cancer (PC) is a highly fatal cancer with increasing incidence and low five-year survival rates. Currently, there are several therapies that target cell signaling networks in PC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!