Cytokines involved in the systemic inflammatory response induced by exposure to particulate matter air pollutants (PM(10)).

Am J Respir Crit Care Med

McDonald Research Laboratory and iCAPTURE Centre, University of British Columbia, Vancouver, British Columbia, Canada.

Published: September 2001

Elevated levels of ambient particulate matter (PM(10)) have been associated with increased cardiopulmonary morbidity and mortality. We previously showed that the deposition of particles in the lung induces a systemic inflammatory response that includes stimulation of the bone marrow. This marrow response is related to mediators released by alveolar macrophages (AM) and in this study we measured cytokines produced by human AM exposed to ambient particles of different composition and size. Identified cytokines were also measured in the circulation of healthy young subjects exposed to air pollutants during the 1997 Southeast Asian forest fires. Human AM were incubated with particle suspensions of residual oil fly ash (ROFA), ambient urban particles (EHC 93), inert carbon particles, and latex particles of different sizes (0.1, 1, and 10 microm) and concentrations for 24 h. Tumor necrosis factor-alpha (TNF-alpha) increases in a dose-dependent manner when AM were exposed to EHC 93 particles (p < 0.02). The TNF response of AM exposed to different sizes of latex particles was similar. The latex (158 +/- 31%), inert carbon (179 +/- 32%), and ROFA (216 +/- 34%) particles all show a similar maximum TNF response (percent change from baseline) whereas EHC 93 (1,020 +/- 212%, p < 0.05) showed a greater maximum response that was similar to lipopolysaccharide (LPS) 1 microg/ml (812 +/- 320%). Macrophages incubated with an optimal dose of EHC 93 particles (0.1 mg/ml) also produce a broad spectrum of other proinflammatory cytokines, particularly interleukin (IL)-6 (p < 0.01), IL-1 beta (p < 0.05), macrophage inflammatory protein-1 alpha (MIP-1 alpha) (p < 0.05), and granulocyte macrophage colony-stimulating factor (GM-CSF) (p < 0.01) with no difference in concentrations of the anti-inflammatory cytokine IL-10 (p = NS). Circulating levels of IL-1 beta, IL-6, and GM-CSF were elevated in subjects exposed to high levels of PM(10) during an episode of acute air pollution. These results show that a range of different particles stimulate AM to produce proinflammatory cytokines and these cytokines are also present in the blood of subjects during an episode of acute atmospheric air pollution. We postulate that these cytokines induced a systemic response that has an important role in the pathogenesis of the cardiopulmonary adverse health effects associated with atmospheric pollution.

Download full-text PDF

Source
http://dx.doi.org/10.1164/ajrccm.164.5.2010160DOI Listing

Publication Analysis

Top Keywords

particles
10
systemic inflammatory
8
inflammatory response
8
particulate matter
8
air pollutants
8
subjects exposed
8
inert carbon
8
particles latex
8
latex particles
8
ehc particles
8

Similar Publications

Multifunctional Microflowers for Precise Optoacoustic Localization and Intravascular Magnetic Actuation In Vivo.

Adv Healthc Mater

January 2025

Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zürich, Winterthurerstrasse 190, Zurich, 8057, Switzerland.

Efficient drug delivery remains a significant challenge in modern medicine and pharmaceutical research. Micrometer-scale robots have recently emerged as a promising solution to enhance the precision of drug administration through remotely controlled navigation within microvascular networks. Real-time tracking is crucial for accurate guidance and confirmation of target arrival.

View Article and Find Full Text PDF

Semiconducting Overoxidized Polypyrrole Nano-Particles for Photocatalytic Water Splitting.

Small

January 2025

UMR 8182, CNRS, Institut de Chimie Moléculaires et des Matériaux d'Orsay, Université Paris-Saclay, Orsay, 91405, France.

Capturing sunlight to fuel the water splitting reaction (WSR) into O and H is the leitmotif of the research around artificial photosynthesis. Organic semiconductors have now joined the quorum of materials currently dominated by inorganic oxides, where for both families of compounds the bandgaps and energies can be adjusted synthetically to perform the Water Splitting Reaction. However, elaborated and tedious synthetic pathways are necessary to optimize the photophysical properties of organic semiconductors.

View Article and Find Full Text PDF

Schistosomiasis, caused by Schistosoma worms, is a major neglected tropical disease in Africa, this disease is ranked as second after malaria. Nanotechnology is important for treating schistosomiasis while minimizing chemotherapy side effects. The current investigate aimed to assess the effectiveness of biosynthesized zinc oxide nanoparticles (ZnO NPs), which were used for the first time in an attempt to find alternative treatment for schistosomiasis and synthesized by Origanum majorana, and to compare them with praziquantel (PZQ), the only chemical treatment approved by the World Health Organization.

View Article and Find Full Text PDF

The Biological Properties of Co-Doped Monetite Are Influenced by Thermal Treatment.

J Biomed Mater Res B Appl Biomater

February 2025

Bioassays and Cellular Dynamics Lab, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP: São Paulo State University, São Paulo, Brazil.

Calcium phosphates, notably monetite, are valued biomaterials for bone applications owing to their osteogenic properties and rapid uptake by bone cells. This study investigates the enhancement of these properties through Cobalt doping, which is known to induce hypoxia and promote bone cell differentiation. Heat treatments at 700°C, 900°C, and 1050°C are applied to both monetite and Cobalt-doped monetite, facilitating the development of purer, more crystalline phases with varied particle sizes and optimized cellular responses.

View Article and Find Full Text PDF

Ammonia Synthesis Over an Iron Catalyst with an Inverse Structure.

Adv Sci (Weinh)

January 2025

Materials and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.

Achieving a substantial increase in the ammonia productivity of the Haber-Bosch (HB) process at low temperatures has been a significant challenge for over 100 years. However, the iron catalyst designed over 100 years ago remains at the forefront of this process because it is difficult to exceed the industrial iron catalyst in terms of the ammonia synthesis rate/catalyst volume that determines ammonia productivity in a reactor. Here, a new catalyst with an inverse structure of a supported metal catalyst that consists of metallic iron particles loaded with an aluminum hydride species is reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!