The sheep genome contributes to localization of control elements in a human gene with complex regulatory mechanisms.

Genomics

Paediatric Molecular Genetics, Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Oxford, 0X3 9DS, UK.

Published: August 2001

Genes that show complex tissue-specific and temporal control by regulatory elements located outside their promoters present a considerable challenge to identify the sequences involved. The rapid accumulation of genomic sequence information for a number of species has enabled a comparative phylogenetic approach to find important regulatory elements. For some genes, which show a similar pattern of expression in humans and rodents, genomic sequence information for these two species may be sufficient. Others, such as the cystic fibrosis transmembrane conductance regulator (CFTR) gene, show significant divergence in expression patterns between mouse and human, necessitating phylogenetic approaches involving additional species. The ovine CFTR gene has a temporal and spatial expression pattern that is very similar to that of human CFTR. Comparative genomic sequence analysis of ovine and human CFTR identified high levels of homology between the core elements in several potential regulatory elements defined as DNase I hypersensitive sites in human CFTR. These data provide a case for the power of an artiodactyl genome to contribute to the understanding of human genetic disease.

Download full-text PDF

Source
http://dx.doi.org/10.1006/geno.2001.6603DOI Listing

Publication Analysis

Top Keywords

regulatory elements
12
genomic sequence
12
human cftr
12
cftr gene
8
human
6
elements
5
cftr
5
sheep genome
4
genome contributes
4
contributes localization
4

Similar Publications

Crystal structure of the anti-CRISPR protein AcrIE7.

Biochem Biophys Res Commun

January 2025

Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China; Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China. Electronic address:

Bacterial adaptive immunity, driven by CRISPR-Cas systems, protects against foreign nucleic acids from mobile genetic elements (MGEs), like bacteriophages. The type I-E CRISPR-Cas system employs the Cascade (CRISPR-associated complex for antiviral defense) complex for target DNA cleavage, guided by crRNA. Anti-CRISPR (Acr) proteins, such as AcrIE7, counteract this defense by inhibiting Cascade activity.

View Article and Find Full Text PDF

Modular organization of enhancer network provides transcriptional robustness in mammalian development.

Nucleic Acids Res

January 2025

State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang'an South Road, Xiamen, Fujian 361102, China.

Enhancer clusters, pivotal in mammalian development and diseases, can organize as enhancer networks to control cell identity and disease genes; however, the underlying mechanism remains largely unexplored. Here, we introduce eNet 2.0, a comprehensive tool for enhancer networks analysis during development and diseases based on single-cell chromatin accessibility data.

View Article and Find Full Text PDF

Optimized circular RNA vaccines for superior cancer immunotherapy.

Theranostics

January 2025

Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.

Circular RNA (circRNA) has gained attention as a promising platform for mRNA vaccines due to its stability, sustained protein expression, and intrinsic immunostimulatory properties. This study aimed to design and optimize a circRNA cancer vaccine platform by screening for efficient internal ribosome entry sites (IRES) and enhancing circRNA translation efficiency for improved cancer immunotherapy. We screened 29 IRES elements to identify the most efficient one for immune cell translation, ultimately discovering the A (EV-A) IRES.

View Article and Find Full Text PDF

Epigenetic Control of Redox Pathways in Cancer Progression.

Antioxid Redox Signal

January 2025

Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.

Growing evidence indicates the importance of redox reactions homeostasis, mediated predominantly by reactive oxygen species (ROS) in influencing the development, differentiation, progression, metastasis, programmed cell death, tumor microenvironment, and therapeutic resistance of cancer. Therefore, reviewing the ROS-linked epigenetic changes in cancer is fundamental to understanding the progression and prevention of cancer. We review in depth the molecular mechanisms involved in ROS-mediated epigenetic changes that lead to alteration of gene expression by altering DNA, modifying histones, and remodeling chromatin and noncoding RNA.

View Article and Find Full Text PDF

Systematic bibliographic analysis of heavy metal remediation.

Water Sci Technol

January 2025

School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK E-mail:

Heavy metals pose a significant threat to human health, with contaminated water sources linked to severe conditions, including gastric cancer. Consequently, the effective remediation of heavy metals is crucial. This study employs a bibliographic analysis to examine key methodologies, leading organizations, and prominent countries involved in heavy metal remediation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!