In this study we show that overexpression of Bcl-2 in PC60R1R2 cells reveals a caspase-dependent mechanism of cytochrome c release following photodynamic therapy (PDT) with hypericin. Bcl-2 overexpression remarkably delayed cytochrome c release, procaspase-3 activation and poly(adenosine diphosphate-ribose)polymerase cleavage during PDT-induced apoptosis while it did not protect against PDT-induced necrosis. PDT-treated cells showed a reduction in the mitochondrial membrane potential which occurred with similar kinetics in PC60R1R2 and PC60R1R2/Bcl-2 cells, and was affected neither by the permeability transition pore inhibitor cyclosporin A nor by the caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD-fmk). Hypericin-induced mitochondrial depolarization coincided with cytochrome c release in PC60R1R2 cells while it precedes massive cytochrome c efflux in PC60R1R2/Bcl-2 cells. Preincubation of PC60R1R2 cells with zVAD-fmk or cyclosporin A did not prevent the mitochondrial efflux of cytochrome c, and caspase inhibition only partially protected the cells from PDT-induced apoptosis. In contrast, in PC60R1R2/Bcl-2 cells cytochrome c release and apoptosis were suppressed by addition of zVAD-fmk or cyclosporin A. These observations suggest that the progression of the PDT-induced apoptotic process in Bcl-2-overexpressing cells involves a caspase-dependent feed-forward amplification loop for the release of cytochrome c.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1562/0031-8655(2001)074<0133:dpmccr>2.0.co;2 | DOI Listing |
J Lipid Res
January 2025
Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany. Electronic address:
The environmental pollutant cadmium (Cd) poses a threat to human health through consumption of contaminated foodstuffs culminating in chronic nephrotoxicity. Mitochondrial dysfunction and excessive reactive oxygen species (ROS) are key to Cd cellular toxicity. Cd-lipid interactions have been less considered.
View Article and Find Full Text PDFMolecules
January 2025
Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea.
The decline in autophagy disrupts homeostasis in skin cells, leading to oxidative stress, energy deficiency, and inflammation-all key contributors to skin photoaging. Consequently, activating autophagy has become a focal strategy for delaying skin photoaging. Natural plants are rich in functional molecules and widely used in the development of anti-photoaging cosmetics.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Leninskie Gory 1, Bld. 40, Moscow 119992, Russia.
Artificial peptides P4, A1 and A4 are homologous to amphipathic α-helical fragments of the influenza virus M1 protein. P4 and A4 contain the cholesterol recognition sequence CARC, which is absent in A1. As shown previously, P4 and A4 but not A1 have cytotoxic effects on some eukaryotic and bacterial cells.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
School of Planning, Design and Construction, Michigan State University, East Lansing, MI, 48824, USA.
Polychlorinated biphenyls (PCBs) are persistent organic pollutants emitted during e-waste activities. Upon release into the environment, PCBs can pose harmful effects to the humans and environment. The present review focused on the effects of PCBs on cell proliferation, apoptosis, functional and developmental toxicity and potential possible molecular mechanisms upon cells and stem cells.
View Article and Find Full Text PDFCurr Issues Mol Biol
January 2025
The M-Lab, Department of Precision Medicine, GROW-Research Institute for Oncology and Reproduction, Maastricht University, 6200MD Maastricht, The Netherlands.
Background/aim: Flavonoids are a group of polyphenols, abundantly present in our diet. Although, based on their chemoprotective effects, intake of flavonoids is associated with a high anticancer potential as evidenced in in vitro and in vivo models, the molecular mechanism is still elusive. This study explores the antiproliferative and cytotoxic effects of the semi-synthetic flavonoid MonoHER (7-mono-O-(β-hydroxyethyl)-rutoside) in vitro on cancer cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!