An earlier developed capillary electrophoresis (CE) system with an on-capillary adsorptive phase is investigated for its suitability to quantitate low concentrations of angiotensin II and gonadorelin in plasma. An off-line solid-phase extraction is used for sample preparation. The on-line preconcentration CE system allows multiple capillary volumes of sample solution to be injected, increasing the concentration sensitivity of CE with 3-4 orders of magnitude. Furthermore, possible influence of matrix salts can be ruled out by employing a rinsing step after sample application. Using short-wavelength UV detection, reproducibility and linearity in the low nanomolar range were satisfactory. The capillary could be efficiently regenerated using a programmed between-run rinsing procedure, allowing 20-30 large injections of sample extracts. Coating of the capillary improved the robustness of the method. Mass spectrometric detection via a previously reported sheathless interface increased the selectivity and sensitivity substantially. Recommendations are provided for the sample preparation process, the most critical part of the system. Further purification of the sample is required to allow the loading of larger sample volumes and to optimize the system's robustness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1522-2683(200108)22:13<2709::AID-ELPS2709>3.0.CO;2-T | DOI Listing |
Mol Neurodegener
January 2025
College of Life Sciences and Oceanography, Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen, 518060, Guangdong, China.
Background: Astrocytes, the most abundant glial cell type in the brain, will convert into the reactive state in response to proteotoxic stress such as tau accumulation, a characteristic feature of Alzheimer's disease (AD) and other tauopathies. The formation of reactive astrocytes is partially attributed to the disruption of autophagy lysosomal signaling, and inhibiting of some histone deacetylases (HDACs) has been demonstrated to reduce the molecular and functional characteristics of reactive astrocytes. However, the precise role of autophagy lysosomal signaling in astrocytes that regulates tau pathology remains unclear.
View Article and Find Full Text PDFTalanta
January 2025
Department of Chemistry-BMC, Uppsala University, 75123, Uppsala, Sweden; Center of Excellence for the Chemical Mechanisms of Life, Uppsala University, Sweden. Electronic address:
Spatial metabolomics offers the combination of molecular identification and localization. As a tool for spatial metabolomics, mass spectrometry imaging (MSI) can provide detailed information on localization. However, molecular annotation with MSI is challenging due to the lack of separation prior to mass spectrometric analysis.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
January 2025
MS Proteomics Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary.
In recent years, alternative enzymes with varied specificities have gained importance in MS-based bottom-up proteomics, offering orthogonal information about biological samples and advantages in certain applications. However, most mass spectrometric workflows are optimized for tryptic digests. This raises the questions of whether enzyme specificity impacts mass spectrometry and if current methods for nontryptic digests are suboptimal.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
January 2025
Department of Chemistry and Centre for Biotechnology, Brock University, St. Catharines, ON, Canada.
Contamination of sodium ions in oligonucleotides often causes issues in mass spectrometric analysis. This study investigated the efficiency of the combination of ammonium acetate and alcohol in desalting oligonucleotides. It was found that oligonucleotide samples containing up to 4 M NaCl can be effectively desalted through precipitation with ethanol or isopropanol in the presence of 1 or 5 M ammonium acetate.
View Article and Find Full Text PDFJ Mol Cell Cardiol Plus
March 2024
Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
Sacubitril/valsartan (Sac/Val) belongs to the group of angiotensin receptor-neprilysin inhibitors and has been used for the treatment of heart failure (HF) for several years. The mechanisms that mediate the beneficial effects of Sac/Val are not yet fully understood. In this study we investigated whether Sac/Val influences the two proteolytic systems, the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP), in a mouse model of pressure overload induced by transverse aortic constriction (TAC) and in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) treated with endothelin-1 (ET1) serving as a human cellular model of hypertrophy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!