Background: The IgE-mediated activation of effector cells and antigen-presenting cells through the high-affinity receptor for IgE (FcepsilonRI) represents a key pathomechanism in type I allergy and many forms of asthma.

Objective: We sought to establish an in vitro molecular model for the interaction of human FcepsilonRI, IgE, and the corresponding allergen and to identify monoclonal anti-human IgE antibodies with a therapeutic profile different from previously established anti-IgE antibodies.

Methods: Human FcepsilonRI alpha chain, a human monoclonal allergen-specific IgE antibody (chimeric Bip 1), and the corresponding allergen, the major birch pollen allergen Bet v 1, were produced as recombinant proteins and analyzed by means of circular dichroism and native overlays, respectively. Using this molecular model, as well as negative stain immunoelectron microscopic analysis, and in vitro cultivated human basophils, we characterized mouse anti-human IgE antibodies.

Results: We established a molecular model for the interaction of human IgE with FcepsilonRI. Using this molecular model, we identified a nonanaphylactic anti-human IgE antibody fragment (Fab12), which blocked the IgE-FcepsilonRI interaction and reacted with effector cell-bound IgE.

Conclusion: Fab12 represents a candidate molecule for therapy of atopy and asthma because it can be used for the depletion of circulating IgE antibodies, as well as for the depletion of IgE-bearing cells.

Download full-text PDF

Source
http://dx.doi.org/10.1067/mai.2001.117593DOI Listing

Publication Analysis

Top Keywords

molecular model
20
anti-human ige
16
ige antibody
12
ige
10
type allergy
8
nonanaphylactic anti-human
8
antibody fragment
8
ige-fcepsilonri interaction
8
ige fcepsilonri
8
model interaction
8

Similar Publications

Alpha/beta values in pediatric medulloblastoma: implications for tailored approaches in radiation oncology.

Radiat Oncol

January 2025

Department of Radiotherapy and Radiooncology, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225, Dusseldorf, Germany.

Background: Medulloblastoma is the most common malignant pediatric brain tumor, typically treated with normofractionated craniospinal irradiation (CSI) with an additional boost over about 6 weeks in children older than 3 years. This study investigates the sensitivity of pediatric medulloblastoma cell lines to different radiation fractionation schedules. While extensively studied in adult tumors, these ratios remain unknown in pediatric cases due to the rarity of the disease.

View Article and Find Full Text PDF

Extracellular matrix stiffness regulates colorectal cancer progression via HSF4.

J Exp Clin Cancer Res

January 2025

Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.

Background: Colorectal cancer (CRC) has high incidence and mortality rates, with severe prognoses during invasion and metastasis stages. Despite advancements in diagnostic and therapeutic technologies, the impact of the tumour microenvironment, particularly extracellular matrix (ECM) stiffness, on CRC progression and metastasis is not fully understood.

Methods: This study included 107 CRC patients.

View Article and Find Full Text PDF

Background: Lysinuric protein intolerance is a rare autosomal disorder caused by mutations in the Slc7a7 gene that lead to impaired transport of neutral and basic amino acids. The gold standard treatment for lysinuric protein intolerance involves a low-protein diet and citrulline supplementation. While this approach partially improves cationic amino acid plasma levels and alleviates some symptoms, long-term treatment is suggested to be detrimental and may lead to life-threatening complications characterized by a wide range of hematological and immunological abnormalities.

View Article and Find Full Text PDF

Background: Interstitial lung abnormalities (ILA) are a proposed imaging concept. Fibrous ILA have a higher risk of progression and death. Clinically, computed tomography (CT) examination is a frequently used and convenient method compared with pulmonary function tests.

View Article and Find Full Text PDF

Mechanistic insights and approaches for beta cell regeneration.

Nat Chem Biol

January 2025

Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden.

Diabetes is characterized by variable loss of insulin-producing beta cells, and new regenerative approaches to increasing the functional beta cell mass of patients hold promise for reversing disease progression. In this Review, we summarize recent chemical biology breakthroughs advancing our knowledge of beta cell regeneration. We present current chemical-based tools, sensors and mechanistic insights into pathways that can be targeted to enhance beta cell regeneration in model organisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!