The mission hardware provided for Bion 11 shared primate experiments included the launch vehicle, biosatellite, spaceflight operational systems, spacecraft recovery systems, life support systems, bioinstrumentation, and data collection systems. Under the unique Russia/US bilateral contract, the sides worked together to ensure the reliability and quality of hardware supporting the primate experiments. Parameters recorded inflight covered biophysical, biochemical, biopotential, environmental, and system operational status.

Download full-text PDF

Source

Publication Analysis

Top Keywords

mission hardware
8
primate experiments
8
bion mission
4
hardware mission
4
hardware provided
4
provided bion
4
bion shared
4
shared primate
4
experiments included
4
included launch
4

Similar Publications

Analysis of Extreme Beak Calcaneal Fracture (Type 2-Lee) Fixed with Cannulated Cancellous Screws: An Original Research Article.

J Orthop Case Rep

January 2025

Department of Orthopaedics, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Karaikal , Puducherry, India.609609.

Introduction: Extreme beak calcaneal fractures (Type 2 Lee's tuberosity avulsion fractures) are rare injuries, accounting for only 1.3-3% of all calcaneal fractures. These injuries are considered as surgical emergency as they can lead to significant functional impairment and soft-tissue compromise if not promptly managed.

View Article and Find Full Text PDF

Interferometric radiometers operating at L-band, such as ESA's SMOS mission, enable crucial Earth observations providing high-resolution measurements of soil moisture, ocean salinity, and other geophysical parameters. However, the increasing electromagnetic spectrum utilization has led to significant Radio Frequency Interference (RFI) challenges, particularly critical given the sensors' fine temperature resolution requirements of less than 1 K. This work presents the hardware implementation of an advanced RFI detection and mitigation algorithm specifically designed for interferometric radiometers, targeting future L-band missions.

View Article and Find Full Text PDF

Utilizing Martian samples for future planetary exploration-Characterizing hazards and resources.

Proc Natl Acad Sci U S A

January 2025

Division of Space, Ecological, Arctic, and Resource-limited (SPEAR) Medicine, Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA 02114.

One of the most surprising and important findings of the first human landings on the Moon was the discovery of a very fine layer of lunar dust covering the entire surface of Moon along with the negative impacts of this dust on the well-being and operational effectiveness of the astronauts, their equipment, and instrumentation. The United States is now planning for human missions to Mars, a planet where dust can also be expected to be ubiquitous for many or most landing sites. For these missions, the design and operations of key hardware systems must take this dust into account, especially when related to crew health and safety.

View Article and Find Full Text PDF

CubeSats have emerged as a promising alternative to satellite missions for studying remote areas where satellite data are scarce and insufficient, such as coastal and marine environments. However, their standard size and weight limitations make integrating remote sensing optical instruments challenging. This work presents the development of Bentayga-I, a CubeSat designed to validate PANDORA, a self-made, lightweight, cost-effective multispectral camera with interchangeable spectral optical filters, in near-space conditions.

View Article and Find Full Text PDF

Here we consider the communications tactics appropriate for a group of agents that need to "swarm" together in a challenging communications environment. Swarms are increasingly important in a number of applications, including land, air, sea and space exploration, and their constituent agents could be satellites, drones, or other autonomous vehicles. A particularly difficult problem is to autonomously connect a swarm of agents together in a situation where stringent communication constraints are present, whether due to a need for stealth, restricted on-board power, external requirements to avoid certain broadcast directions, or equipment & hardware limitations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!