In the last 20 years, the biomedical problems facing man in space have been brought into sharper focus. Space motion sickness is presently our most serious problem. Its etiology remains obscure, but the "sensory conflict" theory appears most plausible. No valid predictive tests of susceptibility exist and presently we must rely on medication for prevention or mitigation of symptoms. Adaptation/biofeedback techniques may prove useful. Cardiovascular "deconditioning" may be effectively attenuated by use of anti-g suits or plasma expanding techniques. Recent bedrest simulation studies would seem to indicate that concerns about chronically elevated central venous pressure during space flight are unfounded. The loss of red cell mass in space flight appears to be self-limited, independent of mission duration, and not of clinical concern, based on recent Soviet experiences. And finally, clodronate, a new diphosphonate effective in preventing hypercalciuria and negative calcium balance in normal human bedrested subjects, may prove effective in preventing or lessening skeletal mineral loss in space.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0094-5765(81)90060-6DOI Listing

Publication Analysis

Top Keywords

space flight
12
years biomedical
8
effective preventing
8
space
5
manned space
4
flight twenty
4
twenty years
4
biomedical status
4
status report
4
report years
4

Similar Publications

In-space biomanufacturing provides a sustainable solution to facilitate long-term, self-sufficient human habitation in extraterrestrial environments. However, its dependence on Earth-supplied feedstocks renders in-space biomanufacturing economically nonviable. Here, we develop a process termed alternative feedstock-driven in-situ biomanufacturing (AF-ISM) to alleviate dependence on Earth-based resupply of feedstocks.

View Article and Find Full Text PDF

Historians have written copiously about the shift to 'germ theories' of disease around the turn of the twentieth century, but in these accounts an entire continent has been left out: Antarctica. This article begins to rebalance our historiography by bringing cold climates back into the story of environmental medicine and germ theory. It suggests three periods of Antarctic (human) microbial research - heroic sampling, systematic studies, and viral space analogue - and examines underlying ideas about 'purity' and infection, the realities of fieldwork, and the use of models in biomedicine.

View Article and Find Full Text PDF

Introduction: Augmented reality is a promising technology for enhancing remote medical assistance. It assists users by directly projecting the relevant virtual assistance in the real world at the right moment and at the right location. This modality is called colocalization but has not been validated in parabolic flights.

View Article and Find Full Text PDF

Commercially available insulin pumps for treatment of diabetes mellitus are currently not qualified to operate in the space environment. This work rigorously tested the fluid delivery performance of a Tandem t:slim X2 insulin pump in both micro- and hypergravity during a parabolic microgravity research flight. The parabolic research flight environment serves as an analogue to the types of transient gravitational loadings experienced during human-led missions, which provides a foundation to expand testing to suborbital and orbital flights in addition to other extreme environmental tests for wilderness dependency.

View Article and Find Full Text PDF

Methane emissions from the Nord Stream subsea pipeline leaks.

Nature

January 2025

Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, China.

The amount of methane released to the atmosphere from the Nord Stream subsea pipeline leaks remains uncertain, as reflected in a wide range of estimates. A lack of information regarding the temporal variation in atmospheric emissions has made it challenging to reconcile pipeline volumetric (bottom-up) estimates with measurement-based (top-down) estimates. Here we simulate pipeline rupture emission rates and integrate these with methane dissolution and sea-surface outgassing estimates to model the evolution of atmospheric emissions from the leaks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!