Tomato (Lycopersicon esculentum Mill.) cvs. Red Robin (RR) and Reimann Philipp (RP) were grown hydroponically for 105 d with a 12 h photoperiod, 26 degrees C/22 degrees C thermoperiod, and 500 micromol m-2 s-1 PPF at either 400, 1200, 5000, or 10,000 micromol mol-1 (0.04, 0.12, 0.50, 1.00 kPa) CO2. Harvested fruits were analyzed for proximate composition, total dietary fiber, nitrate, and elemental composition. No trends were apparent with regard to CO2 effects on proximate composition, with fruit from all treatments and both cultivars averaging 18.9% protein, 3.6% fat, 10.2% ash, and 67.2% carbohydrate. In comparison, average values for field-grown fruit are 16.6% protein, 3.8% fat, 8.1% ash, and 71.5% carbohydrate (Duke and Atchely, 1986). Total dietary fiber was highest at 10,000 micromol mol-1 (28.4% and 22.6% for RR and RP) and lowest at 1000 micromol mol-1 (18.2% and 15.9% for RR and RP), but showed no overall trend in response to CO2. Nitrate values ranged from 0.19% to 0.35% and showed no trend with regard to CO2. K, Mg, and P concentrations showed no trend in response to CO2, but Ca levels increased from 198 and 956 ppm in RR and RP at 400 micromol mol-1, to 2537 and 2825 ppm at 10,000 micromol mol-1. This increase in Ca caused an increase in fruit Ca/P ratios from 0.07 and 0.37 for RR and RP at 400 micromol mol-1 to 0.99 and 1.23 for RR and RP at 10,000 micromol mol-1, suggesting that more dietary Ca should be available from high CO2-grown fruit.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0273-1177(97)00263-9 | DOI Listing |
Inorg Chem
July 2018
Department of Chemistry , Indian Institute of Technology, Kharagpur , West Bengal 721 302 , India.
2,6-Bis(3,5-dimethylpyrazoylmethyl)-4-methylphenol LH was readily synthesized by the reaction between 2,6-bis[(dimethylamino)methyl]-4-methylphenol and 3,5-dimethylpyrazole. The X-ray structure of the trisodium complex of LH showed the benzene-like planar NaO ring with alternative shorter (2.181-2.
View Article and Find Full Text PDFThe study on the spatial distribution of near surface air pollutants carbon dioxide (CO2) and particulate matters (PM) is essential for understanding the pollution characteristics with mobile measurements. Near surface concentrations of CO2, PM and meteorological parameters were measured in Xiamen city, China along the route passing through different functional areas using the mobile laboratory during different time periods of the day [09:00- 12: 00, 13 :00- 16 : 00, 22 : 00-01 : 00 (local time) ] in spring (April) and fall (November), 2013. Carbon dioxide, PM and meteorological parameters data were analyzed for the spatial distribution of CO2 in different functional areas and the relationship of CO2, and PM2.
View Article and Find Full Text PDFCharacteristics of diurnal and seasonal variations of surface atmospheric CO2 concentration were analyzed in the Minjiang River estuarine marsh from December 2011 to November 2012. The results revealed that both the diurnal and seasonal variation of surface atmospheric CO2 concentration showed single-peak patterns, with the valley in the daytime and the peak value at night for the diurnal variations, and the maxima in winter and minima in summer for the seasonal variation. Diurnal amplitude of CO2 concentration varied from 16.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
January 2014
The effect of CO2 enhancement, nitrogen deposition and their interaction on the northern boundary (Zhuanghe in Liaoning Province) of Quercus variabilis seedlings was studied by controlling the CO2 concentration (700 micromol x mol(-1); 400 micromol x mol(-1)) and nitrogen level (non nitrogen fertilizer: CK; nitrogen fertilizer: 120 kg N x hm(-2)). The results showed that under elevated CO2 the Q. variabilis seedlings' leaf morphology, photosynthetic pigments and leaf nitrogen content tended to decrease, and the dark respiration rate decreased 63.
View Article and Find Full Text PDFAnal Chem
May 2014
Gas Metrology Group, Chemical Sciences Division, Materials Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, MS8393, Gaithersburg, Maryland 20899-8393, United States.
The Gas Metrology Group at the National Institute of Standards and Technology (NIST) became active in developing primary standards at ambient levels of N2O in the 1980s, and this has continued through to the present. In recent years, interest in NIST-traceable standards has increased-not only at the ambient level of approximately 325 nmol mol(-1) (ppb) but at micromole per mole (ppm) levels as well. In order to support two in-process dry whole air standard reference materials (SRMs 1720 and 1721) and the NIST Traceable Reference Materials (NTRM) program, a project was implemented in the Gas Metrology Group to produce a complete suite of new primary standard materials (PSMs) of N2O with synthetic air (O2/N2) as the balance gas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!