In the course of a study of possible mechanism for chemical evolution in the primeval sea, we observed the formation of alpha-amino acids and N-acylamino acids from alpha-oxo acids and ammonia in an aqueous medium. Glyoxylic acid reacted with ammonia to form N-oxalylglycine, which gave glycine in a 5-39% yield after hydrolysis with 6N HCl. Similarly when glyoxylic acid was treated with methylamine it yielded N-oxalylsarcosine, which could be hydrolyzed to sarcosine with 17-25% overall yield upon hydrolysis. Pyruvic acid and ammonia reacted to give N-acetylalanine, which formed alanine in a 3-7% overall yield upon hydrolysis. The pH optima in these reactions were pH 3-4. These reactions were further extended to the formation of other amino acids. Glutamic acid, phenylalanine and serine were formed from alpha-ketoglutaric acid, phenylpyruvic acid and hydroxypyruvic acid, respectively, under similar conditions. N-Succinylglutamic acid was obtained as an intermediate for glutamic acid synthesis. Phenylacetylphenylalanineamide was also isolated as an intermediate for phenylalanine synthesis. Alanine, rather than aspartic acid, was produced from oxaloacetic acid. These reactions provide a novel route for the prebiotic synthesis of amino acids. A mechanism for the reactions is proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0273-1177(83)90043-1 | DOI Listing |
Nat Commun
January 2025
Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands.
As a result of the current high throughput of the fast fashion collections and the concomitant decrease in product lifetime, we are facing enormous amounts of textile waste. Since textiles are often a blend of multiple fibers (predominantly cotton and polyester) and contain various different components, proper waste management and recycling are challenging. Here, we describe a high-yield process for the sequential chemical recycling of cotton and polyester from mixed waste textiles.
View Article and Find Full Text PDFBioresour Technol
January 2025
CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela 15782 Santiago de Compostela, Spain.
This work investigates the optimization of medium-chain carboxylate (MCC) production through xylan mixed-culture monofermentation. The pH screening in batch assays showed that the hydrolysis stage and selectivity towards MCC precursors were optimised at pH 6. Subsequently, a continuous stirred tank reactor (CSTR) and a Sequential Batch Reactor (SBR) were operated at different Hydraulic Retention Times (HRT), revealing that the SBR at HRT 2 days yielded the highest caproic acid since lactic acid availability and chain elongation process were balanced.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India. Electronic address:
Conversion of rice straw into nanocellulose offers a sustainable approach to agricultural waste management, yielding an industrially important product with potential applications. This work focuses on effectively extracting pure cellulose from both widely used Basmati and Parmal rice straw (BRS and PRS) using less alkali concentrations (3-5 % NaOH). The process was optimized via Box Behnken design at 90-150 °C temperatures for 90-150 min, which resulted in 88.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
The severe environmental and human health hazards posed by organophosphorus compounds underscore the pressing need for advancements in their degradation and detection. However, practical implementation is impeded by prolonged degradation durations and limited efficiency. Herein, an effective interfacial modification approach is proposed involving the integration of photoactive Au nanoparticles (NPs) onto metal-organic frameworks, resulting in the synthesis of UiO-66/Au NPs exhibiting enhanced hydrolysis activity under light excitation.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah, 84112, USA.
Fiber-reinforced composites (FRCs) possess a remarkable strength-to-weight ratio, making them ideal light-weighing alternative materials of metals used in automotive, aerospace, and outdoor equipment applications, but their recycling is challenging. Chemically recyclable thermoset polymers can enable fiber recovery and reuse; however, challenges remain in the separation and purification of depolymerized small molecules for efficient polymer recycling. To this end, a series of liquid resins for chemically recyclable polymer networks is designed based on phthalic anhydride, a widely produced and inexpensive chemical.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!