Null-point action spectra of the light-growth response were measured for three mutants of Phycomyces blakesleeanus (Burgeff) and compared with the action spectrum of the wild type (WT). The action spectrum for L150, a recently isolated "night-blind" mutant, differs from the WT spectrum. The L150 action spectrum has a depression near 450 nm and small alterations in its long-wavelength cutoff, the same spectral regions where its photogravitropism action spectrum is altered. This indicates that the affected gene product influences both phototropism and the light-growth response. For L85, a "hypertropic" (madH) mutant, the light-growth-response action spectrum is very similar to that of WT even though the photogravitropism action spectrum of L85 has been shown previously to be altered in the near-UV region. The affected gene product in this mutant appears to affect phototropic transduction but not light-growth-response transduction. The action spectrum of C110, a "stiff" (madE) mutant, differs significantly from the WT spectrum near 500 nm, the same spectral region where sporangiophores of madE mutants have been shown to have small alterations in second-derivative absorption spectra. This indicates that the madE gene product may be physically associated with a photoreceptor complex, as predicted by system-analysis studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00197899 | DOI Listing |
Expert Rev Anti Infect Ther
January 2025
Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.
Introduction: Community-acquired pneumonia (CAP) and hospital-acquired pneumonia (HAP) are major global health challenges, with high morbidity and mortality rates. The increasing prevalence of multidrug-resistant (MDR) bacteria may diminish the effectiveness of standard empirical antibiotics, highlighting the need for broader-spectrum agents that target also MDR organisms.
Areas Covered: This review summarizes findings from a PubMed search on the use of ceftobiprole in CAP and HAP.
Front Neurosci
January 2025
Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
The vagus nerve (VN) is the primary parasympathetic nerve, providing two-way communication between the body and brain through a network of afferent and efferent fibers. Evidence suggests that altered VN signaling is linked to changes in the neuroimmune system, including microglia. Dysfunction of microglia, the resident innate immune cells of the brain, is associated with various neurodevelopmental disorders, including schizophrenia, attention deficit hyperactive disorder (ADHD), autism spectrum disorder (ASD), and epilepsy.
View Article and Find Full Text PDFActa Naturae
January 2024
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russian Federation.
The growing incidence of infections caused by antibiotic-resistant strains of pathogens is one of the key challenges of the 21 century. The development of novel technological platforms based on single-cell analysis of antibacterial activity at the whole-microbiome level enables the transition to massive screening of antimicrobial agents with various mechanisms of action. The microbiome of wild animals remains largely underinvestigated.
View Article and Find Full Text PDFACS Chem Biol
January 2025
Biogen, Chemical Biology & Proteomics, 225 Binney Street, Cambridge, Massachusetts 02142, United States.
Dimethyl fumarate (DMF) is an established oral therapy for multiple sclerosis worldwide. Although the clinical efficacy of these fumarate esters has been extensively investigated, the mode of action and pharmacokinetics of fumarates have not been fully elucidated due to their broad-spectrum reactivity and complex metabolism in vivo. To better understand the mechanism of action of DMF and its active metabolite, monomethyl fumarate (MMF), we designed and utilized clickable probes to visualize and enrich probe-modified proteins.
View Article and Find Full Text PDFACS Infect Dis
January 2025
Infectious Diseases Division, CSIR─Indian Institute of Integrative Medicine, Jammu 180001, India.
Tuberculosis (TB), a leading infectious disease caused by the pathogen , poses a significant treatment challenge due to its unique characteristics and resistance to existing drugs. The conventional treatment regimens, which are lengthy and involve multiple drugs, often result in poor patient adherence and subsequent drug resistance, particularly with multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains. This highlights the urgent need for novel anti-TB therapies and new drug targets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!