Two independent pump-probe techniques were used to study the antenna energy transfer kinetics of intact chlorosomes from the green sulfur bacterium Chlorobium tepidum with femtosecond resolution. The isotropic kinetics revealed by one-color experiments in the BChl c antenna were inhomogeneous with respect to wavelength. Multiexponential analyses of the photobleaching/stimulated emission (PB/SE) decay profiles typically yielded (apart from a approximately 10 fs component that may stem from the initial coherent oscillation) components with lifetimes 1-2 ps and several tens of ps. The largest amplitudes for the latter component occur at 810 nm, the longest wavelength studied. Analyses of most two-color pump-probe profiles with the probe wavelength red-shifted from the pump wavelength yielded no PB/SE rise components. PB/SE components with approximately 1 ps risetime were found in 790 --> 810 and 790 --> 820 nm profiles, in which the probe wavelength is situated well into the BChl a absorption region. A 760 --> 740 nm uphill two-color experiment yielded a PB/SE component with 4-6 ps risetime. Broadband absorption difference spectra of chlorosomes excited at 720 nm (in the blue edge of the 746 nm BChl c Qy band) exhibit approximately 15 nm red-shifting of the PB/SE peak wavelength during the first several hundred fs. Analogous spectra excited at 760 nm (at the red edge) show little dynamic spectral shifting. Our results suggest that inhomogeneous broadening and spectral equilibration play a larger role in the early BChl c antenna kinetics in chlorosomes from C. tepidum than in those from C. aurantiacus, a system studied previously. As in C. aurantiacus, the initial one-color anisotropies r(0) for most BChl c wavelengths are close to 0.4. The corresponding residual anisotropies r(infinity) are typically 0.19-0.25, which is much lower than found in C. aurantiacus (> or = 0.35); the transition moment organization is appreciably less collinear in the BChl c antenna of C. tepidum. However, the final one-color anisotropies at 789 and 801 nm are approximately 0 and 0.09 respectively, and the final anisotropy in time 780 --> 800 nm experiment is approximately -0.1. These facts indicate that the BChI a transition moments themselves exhibit some order, and are directed at an angle > 54.7 degrees on the average from the BChl c moments. The one-color profiles exhibit coherent oscillations at most wavelengths, including 800 nm; Fourier analyses of these oscillations frequently yield components with frequencies 70-80 and 130-140 cm-1.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0301-0104(95)00019-kDOI Listing

Publication Analysis

Top Keywords

bchl antenna
12
energy transfer
8
chlorosomes green
8
green sulfur
8
sulfur bacterium
8
bacterium chlorobium
8
chlorobium tepidum
8
profiles probe
8
probe wavelength
8
yielded pb/se
8

Similar Publications

Harnessing nature's palette: Exploring photosynthetic pigments for sustainable biotechnology.

N Biotechnol

January 2025

Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain. Electronic address:

Photosynthetic microorganisms such as cyanobacteria, microalgae, and anoxygenic phototrophic bacteria (APB) have emerged as sustainable and economic biotechnology platforms due to their ability to transform energy from light into chemicals through photosynthesis. The light is absorbed by photosynthetic pigment-protein antenna complexes which are composed of pigments such as bacteriochlorophylls (BChl) and carotenoids in APB, and chlorophylls (Chl), phycobiliproteins (PBP), and carotenoids in cyanobacteria and microalgae. These photosynthetic pigments are essential in the physiology of photosynthetic microorganisms and offer significant health benefits due to their potent antioxidant activity, with properties that include anticancer, antiaging, antiproliferative, anti-inflammatory, and neuroprotective effects.

View Article and Find Full Text PDF

Prominent Role of Charge Transfer in the Spectral Tuning of Photosynthetic Light-Harvesting I Complex.

ACS Phys Chem Au

September 2024

Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan.

Purple bacteria possess two ring-shaped protein complexes, light-harvesting 1 (LH1) and 2 (LH2), both of which function as antennas for solar energy utilization for photosynthesis but exhibit distinct absorption properties. The two antennas have differing amounts of bacteriochlorophyll (BChl) ; however, their significance in spectral tuning remains elusive. Here, we report a high-precision evaluation of the physicochemical factors contributing to the variation in absorption maxima between LH1 and LH2, namely, BChl structural distortion, protein electrostatic interaction, excitonic coupling, and charge transfer (CT) effects, as derived from detailed spectral calculations using an extended version of the exciton model, in the model purple bacterium .

View Article and Find Full Text PDF

Chlorosomes, the photosynthetic antenna complexes of green sulfur bacteria, are paradigms for light-harvesting elements in artificial designs, owing to their efficient energy transfer without protein participation. We combined magic angle spinning (MAS) NMR, optical spectroscopy and cryogenic electron microscopy (cryo-EM) to characterize the structure of chlorosomes from a mutant of . The chlorosomes of this mutant have a more uniform composition of bacteriochlorophyll (BChl) with a predominant homolog, [8Ethyl, 12Ethyl] BChl , compared to the wild type (WT).

View Article and Find Full Text PDF

What We Are Learning from the Diverse Structures of the Homodimeric Type I Reaction Center-Photosystems of Anoxygenic Phototropic Bacteria.

Biomolecules

March 2024

Department of Molecular Biology and Biochemistry and Rutgers Climate and Energy Institute, Rutgers University, Piscataway, NJ 08854-8082, USA.

A Type I reaction center (RC) (Fe-S type, ferredoxin reducing) is found in several phyla containing anoxygenic phototrophic bacteria. These include the heliobacteria (HB), the green sulfur bacteria (GSB), and the chloracidobacteria (CB), for which high-resolution homodimeric RC-photosystem (PS) structures have recently appeared. The 2.

View Article and Find Full Text PDF

The largest light-harvesting antenna in nature, the chlorosome, is a heterogeneous helical BChl self-assembly that has evolved in green bacteria to harvest light for performing photosynthesis in low-light environments. Guided by NMR chemical shifts and distance constraints for Chlorobaculum tepidum wild-type chlorosomes, the two contrasting packing modes for syn-anti parallel stacks of BChl c to form polar 2D arrays, with dipole moments adding up, are explored. Layered assemblies were optimized using local orbital density functional and plane wave pseudopotential methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!