We present a comprehensive study of the physical and chemical conditions along the TMC-1 ridge. Temperatures were estimated from observations of CH3CCH, NH3, and CO. Densities were obtained from a multitransition study of HC3N. The values of the density and temperature allow column densities for 13 molecular species to be estimated from statistical equilibrium calculations, using observations of rarer isotopomers where possible, to minimize opacity effects. The most striking abundance variations relative to HCO+ along the ridge were seen for HC3N, CH3CCH, and SO, while smaller variations were seen in CS, C2H, and HCN. On the other hand, the NH3, HNC, and N2H+ abundances relative to HCO+ were determined to be constant, indicating that the so-called NH3 peak in TMC-1 is probably a peak in the ammonia column density rather than a relative abundance peak. In contrast, the well-studied cyanopolyyne peak is most likely due to an enhancement in the abundance of long-chain carbon species. Comparisons of the derived abundances to the results of time-dependent chemical models show good overall agreement for chemical timescales around 10(5) yr. We find that the observed abundance gradients can be explained either by a small variation in the chemical timescale from 1.2 x 10(5) to 1.8 x 10(5) yr or by a factor of 2 change in the density along the ridge. Alternatively, a variation in the C/O ratio from 0.4 to 0.5 along the ridge produces an abundance gradient similar to that observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/304553 | DOI Listing |
Acta Physiol (Oxf)
February 2025
Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
Aim: Members of the claudin protein family are the major constituents of tight junction strands and determine the permeability properties of the paracellular pathway. In the kidney, each nephron segment expresses a distinct subset of claudins that form either barriers against paracellular solute transport or charge- and size-selective paracellular channels. It was the aim of the present study to determine and compare the permeation properties of these renal paracellular ion channel-forming claudins.
View Article and Find Full Text PDFAnal Methods
January 2025
State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
Dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), and bromate (BrO) are disinfection byproducts (DBPs) formed during drinking water treatment and pose health risks. Rapid and reliable detection of these DBPs is essential for ensuring water safety. Non-suppressed ion chromatography (IC)-electrospray ionization mass spectrometry (IC-ESI-MS/MS) offers a promising approach for simultaneous analysis of organic haloacetic acids (HAAs) and inorganic oxyhalides, but previous methods using toxic methylamine can pose health risks.
View Article and Find Full Text PDFEur J Pediatr
December 2024
Pediatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Della Commenda 9, 20122, Milan, Italy.
J Hazard Mater
December 2024
United Laboratory of High-Pressure Physics and Earthquake Science, Institute of Earthquake Forecasting, China Earthquake Administration, Beijing 100036, China.
J Therm Biol
December 2024
NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!