Temporal variation in the new proton belt created in March 1991 observed using the CREAM & CREDO experiments.

Adv Space Res

Space and Communications Department, Defence Research Agency, Farnborough, UK.

Published: April 1998

The Cosmic Radiation Environment & Activation Monitor (CREAM) was carried in high inclination (57.1 degrees) orbits on Shuttle missions STS-48 in September 1991 (altitude 570 km) and STS-53 (altitude 325 to 385 km) in December 1992. On both occasions the instrument observed an excess of counts due to protons of greater than 30 MeV in energy in the region off of South Africa where field lines of L=2.5 intersect low earth orbit. Meanwhile the Cosmic Radiation Environment and Dosimetry Experiment (CREDO) carried to 840 km, 98.7 degrees orbit on UOSAT-3 has continued to sample the high field portions of the L-shells around L = 2.5 from April 1990 until the present time. When careful subtraction of cosmic-ray contributions is made it can be seen that the March 91 enhancement persisted for approximately 8 months and explains the STS-48 observation. There would appear to have been a further increase produced by the 31 October 1992 flare event and seen by STS-53.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0273-1177(95)00528-mDOI Listing

Publication Analysis

Top Keywords

cosmic radiation
8
radiation environment
8
temporal variation
4
variation proton
4
proton belt
4
belt created
4
created march
4
march 1991
4
1991 observed
4
observed cream
4

Similar Publications

The study of transient and variable events, including novae, active galactic nuclei, and black hole binaries, has historically been a fruitful path for elucidating the evolutionary mechanisms of our universe. The study of such events in the millimeter and submillimeter is, however, still in its infancy. Submillimeter observations probe a variety of materials, such as optically thick dust, which are hard to study in other wavelengths.

View Article and Find Full Text PDF

Long-term effects of combined exposures to simulated microgravity and galactic cosmic radiation on the mouse lung: sex-specific epigenetic reprogramming.

Radiat Environ Biophys

January 2025

Department of Environmental Health Sciences, #820-11, Slot, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, 4301 W. Markham Str, Little Rock, AR, 72205, USA.

Most studies on the effects of galactic cosmic rays (GCR) have relied on terrestrial irradiation using spatially homogeneous dose distributions of mono-energetic beams comprised of one ion species. Here, we exposed mice to novel beams that more closely mimic GCR, namely, comprising poly-energetic ions of multiple species. Six-month-old male and female C57BL/6J mice were exposed to 0 Gy, 0.

View Article and Find Full Text PDF

The radium dial painters (RDP) are a well-described group of predominantly young women who incidentally ingested 226Ra and 228Ra as they painted luminescent watch dials in the first part of the twentieth century. In 1974 pathologist Dr. William D.

View Article and Find Full Text PDF

We present a computational investigation into the fragmentation pathways of ethanolamine (CHNO, EtA), propanol (CHO, PrO), butanenitrile (CHN, BuN), and glycolamide (CHNO, GlA)-saturated organic molecules detected in the interstellar medium (ISM), particularly in the molecular cloud complex Sagittarius B2 (Sgr B2) and its molecular cloud G+0.693-0.027.

View Article and Find Full Text PDF

Plants will form the basis of artificial ecosystems in space exploration and the creation of bases on other planets. Astrophysical factors, such as ionizing radiation (IR), magnetic fields (MF) and gravity, can significantly affect the growth and development of plants beyond Earth. However, to date, the ways in which these factors influence plants remain largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!