Lenses of mice irradiated with 250 MeV protons, 670 MeV/amu 20Ne, 600 MeV/amu 56Fe, 600 MeV/amu 93Nb and 593 MeV/amu 139La ions were evaluated by analyzing cytopathological indicators which have been implicated in the cataractogenic process. The LETs ranged from 0.40 keV/micrometer to 953 keV/micrometer and fluences from 1.31 10(3)/mm2 to 4.99 x 10(7)/mm2. 60Co gamma-rays were used as the reference radiation. The doses ranged from 10 to 40 cGy. The lenses were assessed 64 weeks post irradiation in order to observe the late effects of LET and dose on the target cell population of the lens epithelium. Our study shows that growth dependent pathological changes occur at the cellular level as a function of dose and LET. The shapes of the RBE-LET and RBE-dose curves are consistent with previous work on eye and other biological systems done in both our laboratory and others. The RBEmax's were estimated, for the most radiation cataract related cytological changes, MN frequency and MR disorganization, by calculating the ratio of the initial slopes of dose effect curve for various heavy ions to that of 60Co gamma-ray. For each ion studied, the RBEmax derived from micronucleus (MN) frequency is similar to that derived from meridional row (MR) disorganization, suggesting that heavy ions are equally efficient at producing each type of damage. Furthermore, on a per particle basis (particle/cell nucleus), both MN frequency and MR disorganization are LET dependent indicating that these classic precataractogenic indicators are multi-gene effects. Poisson probability analysis of the particle number traversing cell nuclei (average area = 24 micrometers2) suggested that single nuclear traversals determine these changes. By virtue of their precataractogenic nature the data on these endpoints intimate that radiation cataract may also be the consequence of single hits. In any case, these observations are consistent with the current theory of the mechanism of radiation cataractogenesis, which proposes that genomic damage to the epithelial cells surviving the exposure is responsible for opacification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0273-1177(94)90503-7DOI Listing

Publication Analysis

Top Keywords

600 mev/amu
8
radiation cataract
8
frequency disorganization
8
heavy ions
8
radiation
5
radiation effects
4
effects late
4
late cytopathological
4
cytopathological parameters
4
parameters murine
4

Similar Publications

Article Synopsis
  • Concerns about high-energy radiation causing tumors in astronauts and cancer patients underscore the need to understand how radiation transforms normal tissue.
  • Researchers studied C57BL/6 mice to examine how different types of radiation (high-energy particle vs. low LET gamma radiation) affect gene expression in major organs.
  • A key discovery was the tissue-independent activation of the TAL2 gene following high-energy radiation, suggesting it could serve as a biomarker for radiation exposure and emphasizing the role of various oncotargets in tissue-specific tumor development.
View Article and Find Full Text PDF

To clarify the relative biological effectiveness (RBE) values of carbon ion (C) beams in normal brain tissues, a rat organotypic slice culture system was used. The cerebellum was dissected from 10-day-old Wistar rats, cut parasagittally into approximately 600-µm-thick slices and cultivated using a membrane-based culture system with a liquid-air interface. Slices were irradiated with 140 kV X-rays and 18.

View Article and Find Full Text PDF

Purpose: To assess whether the effects of cranial (56)Fe irradiation on the spatial memory of mice in the water maze are sex and apolipoprotein E (apoE) isoform dependent and whether radiation-induced changes in spatial memory are associated with changes in the dendritic marker microtubule-associated protein 2 (MAP-2) and the presynaptic marker synaptophysin.

Methods And Materials: Two-month-old male and female mice expressing human apoE3 or apoE4 received either a 3-Gy dose of cranial (56)Fe irradiation (600 MeV/amu) or sham irradiation. Mice were tested in a water maze task 13 months later to assess effects of irradiation on spatial memory retention.

View Article and Find Full Text PDF
Article Synopsis
  • Apolipoprotein E (apoE) is crucial for brain recovery after injury and may affect how the brain responds to high energy radiation.
  • In a study with male mice, those lacking apoE (KO) showed more severe behavioral effects from radiation exposure compared to genetically matched mice with normal apoE (WT).
  • Results suggest that apoE plays a significant role in mitigating damage from radiation, with its absence potentially worsening cognitive decline related to brain aging.
View Article and Find Full Text PDF

We measured the number of mutants and the kinds of mutations induced by 137Cs-gamma and by HZE-Fe (56Fe [600 MeV/amu, LET = 190 KeV/micrometer) in standard AL human hamster hybrid cells and in a new variant hybrid, AL-179. We found that HZE-Fe was more mutagenic than 137Cs-gamma per unit dose (about 1.6 fold), but was slightly less mutagenic per mean lethal dose, DO, at both the S1 and hprt- loci of AL cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!