We present observations of the 1300 micron continuum emission and the C18O spectral-line emission from three well-studied giant molecular cloud cores: Orion, W49, and W51. The observations were obtained at the Five College Radio Astronomy Observatory, and they provide a means to examine the consistency of these two methods to trace the column density structure of molecular clouds. We find a good general correlation between the 1300 micron continuum, which traces the column density of dust, and the C18O J = 2 --> 1 line emission, which traces the column density of molecular gas, when the effects of source temperature are taken into consideration. Moreover, nominal values for the gas and dust abundances and the dust properties reproduce the observed continuum-to-line ratios. Thus, no strong C18O abundance gradients within sources has been found, and it appears that either the C18O emission lines or the submillimeter dust emission may be used to derive the mass column density within molecular clouds accurately.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/165467 | DOI Listing |
Environ Sci Technol
January 2025
Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia 22904, United States.
Industrialized swine facilities adversely affect the health and well-being of Eastern North Carolina residents in the U.S. and are an issue of environmental racism.
View Article and Find Full Text PDFOecologia
January 2025
Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, 80523, USA.
Immigration and emigration are key demographic processes of animal population dynamics. However, we have limited knowledge on how fine-scale movement varies over space and time. We developed a Bayesian integrated population model using individual mark-recapture and count data to characterize fine-scale movement of stream fish at 20-m resolution in a 740-m study area every two months for 28 months.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Environmental Systems Science, ETH Zürich, Zürich 8092, Switzerland.
When microplastics (MPs) enter water bodies, they undergo various transport processes, including sedimentation, which can be influenced by factors such as particle size, density, and interactions with other particles. Surface waters contain suspended natural particles (e.g.
View Article and Find Full Text PDFSci Total Environ
January 2025
Center for Marine Sensors, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26382 Wilhelmshaven, Germany.
Microplastics (MP) are known to be ubiquitous. The pathways and fate of these contaminants in the marine environment are receiving increasing attention, but still knowledge gaps exist. In particular, the link between mass-based MP quantification and oceanographic parameters is often lacking.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004 PR China. Electronic address:
Pollution caused by antibiotics, bacteria, and organic dyes presents global public health challenges, posing serious risks to human health. Consequently, new, efficient, fast, and simple photocatalytic systems are urgently required. To this end, 2,7-di(pyridin-4-yl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (NDI)-an electron acceptor-is introduced as a connecting column into a porphyrin-based metal-organic layer (2DTcpp) with excellent photocatalytic activity; this modification yields a three-dimensional pillar-layered metal-organic framework (MOF, 3DNDITcpp) with superior photocatalytic reactive oxygen species (ROS) generation capability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!