Cysts of brine shrimp attached with a liquid adhesive to 12-mm diameter glass coverslips in a syringe-type fluid processing apparatus were flown aboard the NASA space shuttle Discovery, flight STS-60, from 3-11 February 1994, and were allowed to undergo postencystment embryogenesis and to hatch in microgravity. The shuttle flight and the ground-based control coverslips with attached cysts were parallel to the earth's surface during incubation in salt water. Based on the position of the cyst shell crack in the attached cyst population, the ground-control nauplii emerged mostly upward. On the shuttle in microgravity, although our method of detection of orientation would not reveal emergence toward the coverslip, the ratio of the position of the cyst shell crack in the population after hatching best fit the predicted values of a random direction for nauplii emergence. Centrifugation on earth was then used to create hypergravity forces of up to 73 g during postencystment embryogenesis and hatching. The upward orientation of emerging nauplii showed a high degree of correlation (r(2) =98.8%) with a linear relationship to the log of g, with 78.2% of the total hatching upward at 1 g and 91.0% hatching upward at 73 g.

Download full-text PDF

Source

Publication Analysis

Top Keywords

postencystment embryogenesis
12
hatching upward
12
position cyst
8
cyst shell
8
shell crack
8
microgravity hypergravity
4
hypergravity embryo
4
embryo axis
4
axis alignment
4
alignment postencystment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!