A photochemical model of the martian atmosphere.

Icarus

Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena 91125, USA.

Published: September 1994

The factors governing the amounts of CO, O2, and O3 in the martian atmosphere are investigated using a minimally constrained, one-dimensional photochemical model. We find that the incorporation of temperature-dependent CO2 absorption cross sections leads to an enhancement in the water photolysis rate, increasing the abundance of OH radicals to the point where the model CO abundance is smaller than observed. Good agreement between models and observations of CO, O2, O3, and the escape flux of atomic hydrogen can be achieved, using only gas-phase chemistry, by varying the recommended rate constants for the reactions CO + OH and OH + HO2 within their specified uncertainties. Similar revisions have been suggested to resolve discrepancies between models and observations of the terrestrial mesosphere. The oxygen escape flux plays a key role in the oxygen budget on Mars; as inferred from the observed atomic hydrogen escape, it is much larger than recent calculations of the exospheric escape rate for oxygen. Weathering of the surface may account for the imbalance. Quantification of the escape rates of oxygen and hydrogen from Mars is a worthwhile objective for an upcoming martian upper atmospheric mission. We also consider the possibility that HOx radicals may be catalytically destroyed on dust grains suspended in the atmosphere. Good agreement with the observed CO mixing ratio can be achieved via this mechanism, but the resulting ozone column is much higher than the observed quantity. We feel that there is no need at this time to invoke heterogeneous processes to reconcile models and observations.

Download full-text PDF

Source
http://dx.doi.org/10.1006/icar.1994.1137DOI Listing

Publication Analysis

Top Keywords

models observations
12
photochemical model
8
martian atmosphere
8
good agreement
8
escape flux
8
atomic hydrogen
8
escape
5
model martian
4
atmosphere factors
4
factors governing
4

Similar Publications

Tuberculosis (TB) killed approximately 1.3 million people in 2022 and remains a leading cause of death from the bacteria Mycobacterium tuberculosis (M.tb); this number of deaths was surpassed only by COVID-19, caused by the SARS-CoV-2 virus.

View Article and Find Full Text PDF

Multidrug efflux pumps have been found to play a crucial role in drug resistance in bacteria and eukaryotes. In this study, we investigated the presence of functional multidrug and toxic compound extrusion (MATE) efflux pumps, inferred from whole genome sequencing, in the halophilic archaeon Halorubrum amylolyticum CSM52 using Hoechst 33342 dye accumulation and antimicrobial sensitivity tests in the presence and absence of efflux pump inhibitors (EPIs). The whole genome sequence of H.

View Article and Find Full Text PDF

Heat assisted magnetic recording (HAMR) technology is considered a solution to overcome the limitations of perpendicular magnetic recording and enable higher storage densities. To improve and understand the performance of magnetic writers in HAMR technology, it is crucial to possess a comprehensive understanding of both the magnetic field generated during the writing process and the thermal effects induced by the laser. In this work, we have developed a micromagnetic HAMR model with atomistic parameterization.

View Article and Find Full Text PDF

Background: Emerging evidence suggests that the creatinine-to-body weight (Cre/BW) ratio is a predictor for incident diabetes in the Asian population. This study examined the association between Cre/BW ratio and incident diabetes, as well as the relationship between Cre/BW ratio and skeletal muscle and body fat mass in a multiethnic Malaysian cohort.

Methods: A total of 13 047 eligible participants were selected from 119 560 The Malaysian Cohort participants.

View Article and Find Full Text PDF

Development and biomechanical evaluation of a 3D printed analogue of the human lumbar spine.

3D Print Med

January 2025

Musculoskeletal Biomechanics Research Lab, Department of Mechanical Engineering, McGill University, 845 Sherbrooke St. W (163), Montréal, QC, H3A 0C3, Canada.

Background: There exists a need for validated lumbar spine models in spine biomechanics research. Although cadaveric testing is the current gold standard for spinal implant development, it poses significant issues related to reliability and repeatability due to the wide variability in cadaveric physiologies. Moreover, there are increasing ethical concerns with human dissection practices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!