Solid waste processing in a CELSS: nitrogen recovery.

Life Support Biosph Sci

Lockheed Martin Engineering & Sciences, NASA-Ames Research Center, Moffett Field, CA 94035-1000, USA.

Published: February 1997

Life support technologies are being developed for long-duration space missions at NASA Ames Research Center as part of the Controlled Ecological Life Support System (CELSS) Program. The primary goal of the CELSS Program is to develop small-scale ecological systems, a CELSS, that mimic ecological systems on Earth. This small-scale replica CELSS can provide all of the necessary life support functions and recycle nearly 100% of the waste products. A CELSS will use plants to purify air, clean water, and generate food for a human habitat. Human and plant waste products will be converted to useful products and reintroduced into the plant and human habitats for consumption. Both physical/chemical and biological waste-processing systems may be utilized to recycle waste materials. Recovering nitrogen from waste products is a major concern because nitrogen is an important nutrient for plants and humans. This article will outline plant selection requirements and waste-processing requirements, characterize waste streams, and discuss the potential physical/chemical waste processors used to process the wastes and the fate of nitrogen as a result of the process employed.

Download full-text PDF

Source

Publication Analysis

Top Keywords

life support
12
waste products
12
celss program
8
ecological systems
8
celss
6
waste
6
solid waste
4
waste processing
4
processing celss
4
nitrogen
4

Similar Publications

Accumulating evidence is suggesting more frequent tropical-to-temperate transitions than previously thought. This raises the possibility that biome transitions could be facilitated by precursor traits. A wealth of ecological, genetic and physiological evidence suggests overlap between drought and frost stress responses, but the origin of this overlap, i.

View Article and Find Full Text PDF

Purpose Of Review: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease, characterized by hepatic steatosis with at least one cardiometabolic risk factor. Patients with MASLD are at increased risk for the occurrence of cardiovascular events. Within this review article, we aimed to provide an update on the pathophysiology of MASLD, its interplay with cardiovascular disease, and current treatment strategies.

View Article and Find Full Text PDF

Clinical efficacy and safety of sodium thiosulfate in the treatment of uremic pruritus: a meta-analysis of randomized controlled trials.

Arch Dermatol Res

January 2025

Blood Purification Center, Zhejiang Hospital, 1229 Gudun Road, Xihu District, Hangzhou, Zhejiang, 310030, China.

Uremic pruritus (UP) is a debilitating condition frequently associated with chronic kidney disease, severely impairing patients' quality of life and contributing to increased mortality. Recent studies have suggested that intravenous sodium thiosulfate (STS) may offer therapeutic relief for pruritus in patients undergoing hemodialysis. To assess its effectiveness, we conducted a systematic review and meta-analysis to explore the potential of intravenous STS in managing UP.

View Article and Find Full Text PDF

Background: In their care of terminally ill patients, palliative care physicians and oncologists are increasingly predisposed to physical and emotional exhaustion, or compassion fatigue (CF). Challenges faced by physicians include complex care needs; changing practice demands, and sociocultural contextual factors. Efforts to better understand CF have, however, been limited.

View Article and Find Full Text PDF

Introduction: Palliative care (PC) education is not uniformly provided across U.S. medical schools.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!