The Viking Gas Chromatograph Mass Spectrometer failed to detect organic compounds on Mars, and both the Viking Labeled Release and the Viking Gas Exchange experiments indicated a reactive soil surface. These results have led to the widespread belief that there are oxidants in the martian soil. Since H2O2 is produced by photochemical processes in the atmosphere of Mars, and has been shown in the laboratory to reproduce closely the Viking LR results, it is a likely candidate for a martian soil oxidant. Here, we report on the results of a coupled soil/atmosphere transport model for H2O2 on Mars. Upon diffusing into the soil, its concentration is determined by the extent to which it is adsorbed and by the rate at which it is catalytically destroyed. An analytical model for calculating the distribution of H2O2 in the martian atmosphere and soil is developed. The concentration of H2O2 in the soil is shown to go to zero at a finite depth, a consequence of the nonlinear soil diffusion equation. The model is parameterized in terms of an unknown quantity, the lifetime of H2O2 against heterogeneous catalytic destruction in the soil. Calculated concentrations are compared with a H2O2 concentration of 30 nmoles/cm3, inferred from the Viking Labeled Release experiment. A significant result of this model is that for a wide range of H2O2 lifetimes (up to 10(5) years), the extinction depth was found to be less than 3 m. The maximum possible concentration in the top 4 cm is calculated to be approximately 240 nmoles/cm3, achieved with lifetimes of greater than 1000 years. Concentrations higher than 30 nmoles/cm3 require lifetimes of greater than 4.3 terrestrial years. For a wide range of H2O2 lifetimes, it was found that the atmospheric concentration is only weakly coupled with soil loss processes. Losses to the soil become significant only when lifetimes are less than a few hours. If there are depths below which H2O2 is not transported, it is plausible that organic compounds, protected from an oxidizing environment, may still exist. They would have been deposited by meteors, or be the organic remains of past life.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/icar.1994.1012 | DOI Listing |
Chem Sci
January 2025
School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou 221116 China
Reactive oxygen species (ROS) play a critical role in regulating various physiological processes. To gain a comprehensive understanding of their distinct functions in different physiological events, it is imperative to detect binary ROS simultaneously. However, the development of the sensing method capable of binary ROS detection remains a significant challenge.
View Article and Find Full Text PDFPak J Med Sci
January 2025
Almila Senat, Department of Biochemistry, Republic of Turkey Ministry of Health, Taksim Training and Research Hospital, Istanbul, Turkey.
Objective: This study aimed to investigate the relationship between oxidative stress (OS) and endometrial polyps (EP) in pre- versus postmenopausal women with abnormal uterine bleeding.
Methods: This prospective case control study was conducted in the Gynecology Department of Ankara Bilkent City Hospital between January and December 2019. In this study, the EP and control groups included 45 participants each (30 pre- and 15 postmenopausal women).
J Food Sci Technol
January 2025
Agricultural Biochemistry Department, Faculty of Agriculture, Ain-Shams University, P.O. Box 68, Hadayek Shoubra, Cairo 11241 Egypt.
Unlabelled: Despite the remarkably high antioxidant activity of tocopherols, their applications in the food industry are limited because of their instability under various conditions. Complexes of α-tocopherol (α-TQ) or α-tocopheryl acetate (α-TQA) with β-cyclodextrin (β-CD) or starch were prepared and characterized by UV-vis, IR and thermal analysis. Oxidative stability of α-TQ and α-TQA against HO was 74.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China.
Chemodynamic therapy (CDT) is an emerging antitumor strategy utilizing iron-initiated Fenton reaction to destroy tumor cells by converting endogenous HO into highly toxic hydroxyl radical (OH). However, the intratumoral overexpressed glutathione (GSH) and deficient acid greatly reduce CDT efficacy because of OH scavenging and decreased OH production efficiency. Even worse, the various physiological barriers, especially in glioma, further put the brakes on the targeted delivery of Fenton agents.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
February 2025
Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
Age-related cataracts (ARCs) are associated with increased oxidative stress and cellular senescence. Our objective is to investigate the function of Sirtuin 1 (SIRT1) within ARCs. In ARCs tissues and HO-treated lens epithelial cells (LECs), the expression levels of SIRT1 were examined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!