Comparison of experimental data obtained from short (SDEF) and long duration exposure flights (LDEF) have recently led to results which will be significant for longer and/or repeated sojourn of man in space. Under orbital conditions biological stress and damage are induced in test subjects by cosmic radiation, especially the high energetic, densely ionizing component of heavy ions. Plant seeds were successful model systems for a biotest in studying the physiological damages and mutagenic effect caused by ionizing cosmic radiation in particular stem cells. Dosimetrically, the subdivision into charge- and Let-groups reveals the contribution of the intermediate group (LET = 350-1000 MeV/cm) due to the medium heavy ions (Z = 6-10). Their relative contribution increases with the lower inclination of the orbit of LDEF-1; on the other hand, the total fluence becomes higher with longer duration of the flight. The observed endpoints of the biological radiation damage hint at a correlation with particle dose rate rather than with the dose; additionally, data on shielding effects inside and outside the space craft and its exposure were gained from the different SDEF- and LDEF-missions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0094-5765(94)90172-4 | DOI Listing |
Chem Sci
January 2025
Instituto de Química, Universidad de Antioquia Calle 70 No. 52-21 Medellín 050010 Colombia
We present a computational investigation into the fragmentation pathways of ethanolamine (CHNO, EtA), propanol (CHO, PrO), butanenitrile (CHN, BuN), and glycolamide (CHNO, GlA)-saturated organic molecules detected in the interstellar medium (ISM), particularly in the molecular cloud complex Sagittarius B2 (Sgr B2) and its molecular cloud G+0.693-0.027.
View Article and Find Full Text PDFPlants will form the basis of artificial ecosystems in space exploration and the creation of bases on other planets. Astrophysical factors, such as ionizing radiation (IR), magnetic fields (MF) and gravity, can significantly affect the growth and development of plants beyond Earth. However, to date, the ways in which these factors influence plants remain largely unexplored.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
Background: Space-induced plant mutagenesis, driven by cosmic radiation, offers a promising approach for the selective breeding of new plant varieties. By leveraging the unique environment of outer space, we successfully induced mutagenesis in 'Deqin' alfalfa and obtained a fast-growing mutant. However, the molecular mechanisms underlying its rapid growth remain poorly unexplored.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Freiburg Materials Research Center, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg im Breisgau, Germany.
Nuclear power plant decommissioning requires the rapid and accurate classification of radioactive waste in narrow spaces and under time constraints. Photon-counting detector technology offers an effective solution for the quick classification and detection of radioactive hotspots in a decommissioning environment. This paper characterizes a 5 mm CdTe Timepix3 detector and evaluates its feasibility as a single-layer Compton camera.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Graduate School of Health Sciences, Hirosaki University, Hirosaki 036-8560, Japan.
Ambient dose rate surveying has the objective, in most cases, to quantify terrestrial radiation levels. This is true in particular for Citizen Monitoring projects. Readings of detectors, which do not provide spectrally resolved information, such as G-M counters, are the sum of contributions from different sources, including cosmic radiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!