Attempts to solve two fundamental questions are described: the first concerns which mechanisms were responsible for the self-assembly of membrane structures on the prebiotic Earth, and the second concerns the routes by which considerable amounts of membrane amphiphiles formed from simpler hydrocarbons. The physicochemical properties of several amphiphilic compounds extracted from the Murchison carbonaceous chondrite were studied, using infra-red and fluorescent spectroscopy, measurements of surface activity, chromato-mass spectrometry, and polarization and electron microscopy. The results supported previous observations that amphiphilic and aromatic hydrocarbons were present in significant quantities, and the first demonstration of surface activity among a number of acidic derivatives of hydrocarbons is reported. In addition, one fraction of the surface-active compounds can form bilayer structures, showing that membranes could have self-assembled on the prebiotic Earth. Photochemical oxidation of hydrocarbons is shown to be a likely source of the amphiphilic molecules required for the self-assembly of primary membrane structures.
Download full-text PDF |
Source |
---|
J Phys Chem B
January 2025
Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-ku, Kyoto 606-8502, Japan.
V-shaped polyaromatic amphiphiles (s) form micelle-like nonbonded self-assemblies in aqueous solution and feature prominent properties of encapsulation and solubilization for various types of hydrophobic molecules. To understand microscopic molecular characteristics underlying the wide capability of solubilization, the atomic-level molecular structures of the self-assemblies of s were investigated by microsecond molecular dynamics (MD) simulations. The MD simulations showed that s spontaneously formed quasi-stable self-assemblies, in close agreement with experimental observations.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States.
Understanding the evolution of protocells, primitive compartments that distinguish self from nonself, is crucial for exploring the origin of life. Fatty acids and monoglycerides have been proposed as key components of protocell membranes due to their ability to self-assemble into bilayers and vesicles capable of nutrient exchange. In this study, we investigate the electrophysiological properties of planar bilayers composed of monoglyceride and fatty acid mixtures, using a droplet interface bilayer system.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041 China. Electronic address:
We developed antibiotic-based micelles with bone-targeting and charge-switchable properties (P-CASMs) for treating infectious osteomyelitis. The amphiphilic molecules are formed by combining ciprofloxacin (CIP) with ligand 1 through a mild salifying reaction, and spontaneously self-assemble into antibiotic-based micelles (ASMs) in aqueous solution. Acrylate groups on ligand 1 enable cross-linking of ASMs with pentaerythritol tetra(mercaptopropionate) via a click reaction, forming pH-sensitive cross-linked micelles (CASMs).
View Article and Find Full Text PDFAnal Chem
January 2025
School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an 710072, China.
Lymphoma is a malignant cancer characterized by a rapidly increasing incidence, complex etiology, and lack of obvious early symptoms. Efficient theranostics of lymphoma is of great significance in improving patient outcomes, empowering informed decision-making, and driving medical innovation. Herein, we developed a multifunctional nanoplatform for precise optical imaging and therapy of lymphoma based on a new photosensitizer (1-oxo-1-benzoo[de]anthracene-2,3-dicarbonitrile-triphenylamine (OBADC-TPA)).
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Fisheries Research Institute, Nea Peramos, 64007 Kavala, Greece.
Marine organisms, including shrimps, have gained research interest due to containing an abundance of bioactive lipid molecules.This study evaluated the composition and the in vitro biological activities of amphiphilic bioactive compounds from four different wild shrimp species: , , , and . Total lipid (TL) extracts were obtained from shrimp and separated into total amphiphilic (TAC) and total lipophilic (TLC) compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!