The patterns and rates of organelle redistribution in columella (i.e., putative statocyte) cells of agravitropic agt mutants of Zea mays are not significantly different from those of columella cells in graviresponsive roots. Graviresponsive roots of Z. mays are characterized by a strongly polar movement of 45Ca2+ across the root tip from the upper to the lower side. Horizontally-oriented roots of agt mutants exhibit only a minimal polar transport of 45Ca2+. Exogenously-induced asymmetries of Ca result in curvature of agt roots toward the Ca source. A similar curvature can be induced by a Ca asymmetry in normally nongraviresponsive (i.e., lateral) roots of Phaseolus vulgaris. Similarly, root curvature can be induced by placing the roots perpendicular to an electric field. This electrotropism increased with 1) currents between 8-35 mA, and 2) time between 1-9 hr when the current is constant. Electrotropism is reduced significantly by treating roots with triiodobenzoic acid (TIBA), an inhibitor of auxin transport. These results suggest that 1) if graviperception occurs via the sedimentation of amyloplasts in columella cells, then nongraviresponsive roots apparently sense gravity as do graviresponsive roots, 2) exogenously-induced asymmetries of a gravitropic effector (i.e., Ca) can induce curvature of normally nongraviresponsive roots, 3) the gravity-induced downward movement of exogenously-applied 45Ca2+ across tips of graviresponsive roots does not occur in nongraviresponsive roots, 4) placing roots in an electrical field (i.e., one favoring the movement of ions such as Ca2+) induces root curvature, and 5) electrically-induced curvature is apparently dependent on auxin transport. These results are discussed relative to a model to account for the lack of graviresponsiveness by these roots.

Download full-text PDF

Source

Publication Analysis

Top Keywords

graviresponsive roots
16
roots
14
nongraviresponsive roots
12
agt mutants
8
columella cells
8
exogenously-induced asymmetries
8
curvature induced
8
root curvature
8
placing roots
8
auxin transport
8

Similar Publications

Light signals counteract alterations caused by simulated microgravity in proliferating plant cells.

Am J Bot

September 2021

Centro de Investigaciones Biológicas Margarita Salas - CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain.

Premise: Light and gravity are fundamental cues for plant development. Our understanding of the effects of light stimuli on plants in space, without gravity, is key to providing conditions for plants to acclimate to the environment. Here we tested the hypothesis that the alterations caused by the absence of gravity in root meristematic cells can be counteracted by light.

View Article and Find Full Text PDF

Augmentation of root gravitropism by hypocotyl curvature in Brassica rapa seedlings.

Plant Sci

August 2019

Biology Department, University of Louisiana at Lafayette, Lafayette, Louisiana, 70504-43602, United States. Electronic address:

Main Conclusion Root gravitropism of primary roots is assisted by curvature of the hypocotyl base. Root gravitropism is typically described as the sequence of signal perception, signal processing, and response that causes differential elongation and the establishment of a new gravitropic set-point angle. We describe two components of the graviresponse of Brassica seedlings that comprise a primary curvature of the root tip and a later onset but stronger curvature that occurs at the base of the hypocotyl.

View Article and Find Full Text PDF

Plants respond to gravitational force through directional growth along the gravity vector. Although auxin is the central component of the root graviresponse, it works in concert with other plant hormones. Here, we show that the folate precursor -aminobenzoic acid (PABA) is a key modulator of the auxin-ethylene interplay during root gravitropism in Arabidopsis ().

View Article and Find Full Text PDF

Land plants perceive gravity and respond to it in an organ-specific way; shoots typically direct growth upwards, roots typically downwards. Historically, at least with respect to maize plants, this phenomenon is attributed to three sequential processes, namely graviperception, the transduction of the perceived signal, and the graviresponse, resulting in a typical (re)positioning of the organ or entire plant body relative to the gravivector. For decades, sedimentation of starch-containing plastids within the cells of special tissues has been regarded as the primary and initiating process fundamental for gravitropic growth (starch-statolith hypothesis).

View Article and Find Full Text PDF

Reorientation of cucumber seedlings induces re-localization of CsPIN1 auxin efflux carriers in endodermal cells of the transition zone between hypocotyl and roots. This study examined whether the re-localization of CsPIN1 was due to the graviresponse. Immunohistochemical analysis indicated that, when cucumber seedlings were grown entirely under microgravity conditions in space, CsPIN1 in endodermal cells was mainly localized to the cell side parallel to the minor axis of the elliptic cross-section of the transition zone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!