A comparison of neutron-induced SEU rates in Si and GaAs devices.

IEEE Trans Nucl Sci

E.O. Hulburt Center for Space Research, Naval Research Laboratory, Washington, DC 30275.

Published: December 1988

The single-event-upset rates due to neutron-induced nuclear recoils have been calculated for Si and GaAs components using the HETC and MCNP codes and the ENDF data base for (n, p) and (n, alpha) reactions. For the same critical charge and sensitive volume, the upset rate in Si exceeds that of GaAs by a factor of about 1.7, mainly because more energy is transferred in neutron interactions with lighter Si nuclei. The upset rates due to neutrons are presented as functions of critical charge and atmospheric altitude. Upsets induced by cosmic-ray nuclei, secondary protons and neutrons are compared.

Download full-text PDF

Source
http://dx.doi.org/10.1109/23.25511DOI Listing

Publication Analysis

Top Keywords

critical charge
8
comparison neutron-induced
4
neutron-induced seu
4
seu rates
4
rates gaas
4
gaas devices
4
devices single-event-upset
4
single-event-upset rates
4
rates neutron-induced
4
neutron-induced nuclear
4

Similar Publications

The need for stringent phosphorus removal from domestic wastewater is increasing to mitigate eutrophication, while efficient phosphate reuse is critical due to the global phosphate crisis. Combining aluminum sulfate (ALS) with high molecular weight organic polymers achieved 95-99% removal of particles, turbidity, and phosphates, reducing ALS usage by 40%. We propose mechanisms to explain the enhanced treatment efficiency.

View Article and Find Full Text PDF

Resolving the Ambiguity of Thermal Reversion in a Nonconjugated Monocyclic Diene-Based Photoswitch for Rechargeable Solar Thermal Batteries.

J Phys Chem A

January 2025

Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana 506004, India.

We report nonconjugated monocyclic dienes (nCMDs) as unique photoswitchable molecules that hold promise for harvesting substantial solar energy and storing it for extended durations. Herein, cyclohepta-1,4-diene and its N-heterocyclic analogue have been considered as prototypical models for investigating photoswitching behavior in nCMDs. Initially, the nonradiative deactivation pathway of nCMD from the low-lying excited state to the [2 + 2]-cycloadduct has been evaluated.

View Article and Find Full Text PDF

Flaky sputtered silicon MWCNTs core-shell structure as a freestanding binder-free electrode for lithium-ion battery.

Sci Rep

January 2025

Nano-fabricated Energy Devices Lab, School of Electrical and Computer Eng., University of Tehran, 14395-515, Tehran, Iran.

Core-shell silicon/multiwall carbon nanotubes are one of the most promising anode candidates for further improvement of lithium-ion batteries. Sufficient accommodation for massive volume expansion of silicon during the lithiation process and preventing pulverization and delamination with easy fabrication processes are still critical issues for practical applications. In this study, core-shell silicon/MWCNTs anode materials were synthesized using a facile and controllable PECVD technique to realize aligned MWCNTs followed by a silicon sputtering step.

View Article and Find Full Text PDF

Over the past decade, Mass Administration of Medicines (MAM) has been a key strategy for controlling schistosomiasis and soil-transmitted helminthiasis (STHs) in Anambra State, Nigeria. This longitudinal study, conducted from 2017 to 2019, evaluated the impact of interventions for controlling schistosomiasis (SCH) and STHs in recipient communities. A total of 1,046 pupils aged 5 to 16 years were enrolled, with Kato-Katz and urine filtration methods used for faecal and urine sample analysis.

View Article and Find Full Text PDF

On the formation and stability mechanisms of diverse lipid-based nanostructures for drug delivery.

Adv Colloid Interface Sci

January 2025

Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia.

In the evolving landscape of nanotechnology and pharmaceuticals, lipid nanostructures have emerged as pivotal areas of research due to their unique ability to mimic biological membranes and encapsulate active molecules. These nanostructures offer promising avenues for drug delivery, vaccine development, and diagnostic applications. This comprehensive review explores the complex mechanisms underlying the formation and stability of various lipid nanostructures, including lipid liquid crystalline nanoparticles and solid lipid nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!