A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Survival under space vacuum--biochemical aspects. | LitMetric

Survival under space vacuum--biochemical aspects.

Adv Space Res

Institute for Biochemistry, Johannes-Gutenberg-University, Mainz, FRG.

Published: September 1999

Exposure to vacuum predominantly causes the removal of water. As a consequence hydrophobic bonds (e.g. of membranes and proteins) are disrupted and metabolism practically comes to a complete halt. Removal of hydrate water also causes substantial changes regarding the structure of DNA (A-structure likely prevails). Some organisms, however, especially bacterial spores and fungal conidia are so well adapted to extreme dryness that substantial fractions of these organisms survive several months of vacuum even at room temperature. In these organisms some vacuum-induced alterations occur that are not readily reversed by readdition of water; mutations become evident and the amount of DNA covalently bound to protein is drastically increased. The mechanisms of these processes and their possible repair are not yet clear. There is evidence that chemical reactions (e.g. dehydration reactions) are involved although they likely proceed at an extremely low rate. Using the dehydration of serin by vacuum as a model system (the resulting amino acrylic acid is converted into pyruvic acid and ammonia after reexposure to water) we could establish that about 3 out of 100 000 serins are finally converted into pyruvic acid after exposure to 10(-6) Torr for 1 week at 55 degrees C In dry Ar the corresponding rate is only about 1.5.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0273-1177(86)90099-2DOI Listing

Publication Analysis

Top Keywords

converted pyruvic
8
pyruvic acid
8
survival space
4
space vacuum--biochemical
4
vacuum--biochemical aspects
4
aspects exposure
4
exposure vacuum
4
vacuum removal
4
water
4
removal water
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!