Free-living cells show distinct gravisensitivities and often use the gravity ('g') vector for their spatial orientation. The rhythmic contractions of the ameboid Myxomycete (acellular slime mold) Physarum polycephalum are a sensitive parameter which can be modified by external stimuli. Space experiments and ground-based 0 x g simulation studies established that the contraction period transiently decreases after a transition from 1 x g to 0 x g with a back-regulating process starting after 30 min. For determination of the threshold of acceleration sensitivity, a slow-rotating centrifuge microscope (NIZEMI--Niedergeschwindigkeits-Zentrifugenmikroskop) was used, providing in space accelerations from 0 x g to 1.5 x g. A stepwise acceleration increase revealed that the lowest acceleration level capable of inducing a response was 0.1 x g. The response to the acceleration increase was an increase in contraction period, in contrast to a stimulus deprivation, which led to a period decrease. The time schedule of the acceleration responses and back-regulating process seems to be fixed, suggesting that every acceleration being above the threshold can induce a complete response-regulation process. The low acceleration-sensitivity threshold favors rather large and dense cell organelles as candidates for the gravity receptor in Physarum.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0168-1656(96)01385-5DOI Listing

Publication Analysis

Top Keywords

acceleration-sensitivity threshold
8
contraction period
8
back-regulating process
8
acceleration increase
8
acceleration
6
threshold physarum
4
physarum free-living
4
free-living cells
4
cells distinct
4
distinct gravisensitivities
4

Similar Publications

The central processing mechanisms of vibratory signals in small plant-dwelling insects that rely primarily on substrate-borne vibratory communication are still largely unknown. To elucidate the neural mechanisms involved in vibratory signaling, the vibration-sensitive interneurons in thoracic ganglia of the southern green stinkbug, Nezara viridula, were investigated electrophysiologically by single-cell recordings and staining. Ten types of interneurons were described and divided into four categories, based on their gross morphology.

View Article and Find Full Text PDF

Free-living cells show distinct gravisensitivities and often use the gravity ('g') vector for their spatial orientation. The rhythmic contractions of the ameboid Myxomycete (acellular slime mold) Physarum polycephalum are a sensitive parameter which can be modified by external stimuli. Space experiments and ground-based 0 x g simulation studies established that the contraction period transiently decreases after a transition from 1 x g to 0 x g with a back-regulating process starting after 30 min.

View Article and Find Full Text PDF

Cellular signal processing in multi-, as well as in unicellular organisms, has to rely on fundamentally similar mechanisms. Free-living single cells often use the gravity vector for their spatial orientation (gravitaxis) and show distinct gravisensitivities. In this investigation the gravisensitive giant ameboid cell Physarum polycephalum (Myxomycetes, acellular slime molds) is used.

View Article and Find Full Text PDF

1. The unconditioned feeding response of the mottled sculpin, Cottus bairdi, was used to measure threshold sensitivity of the lateral line system to a vibrating sphere as a function of stimulus position (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!