High-dose cyclophosphamide (HD-CTX) is largely employed in high-dose chemotherapy (HD-CHT) protocols. HD-CTX dose-limiting toxicity expresses itself as cardiac toxicity which is fatal in a minority of patients. The pathophysiology of HD-CTX-associated cardiotoxicity is still poorly understood. Autopsy studies in patients who died from acute HD-CTX-induced cardiac toxicity revealed hemorrhagic myocardial cell death and interstitial edema. Recently troponins, in particular troponin I (cTnI), have been found to represent a uniquely sensitive and specific marker of myocyte membrane integrity and therefore to increase in response to minimal myocardial cell damage in different settings, including doxorubicin-induced cardiotoxicity. We performed a multiparametric cardiologic monitoring in 16 consecutive breast cancer patients undergoing HD-CTX by means of serial ECG registrations and cardiac enzymes (CPK, CPK-MB and cTnI) determinations plus echocardiography in order to clarify acute cardiac events following HD-CTX administration. Neither overt cardiac toxicity nor cardiac enzymes elevation were recorded. Serial ECGs revealed in six cases little and reversible reduction of QRS voltage and/or ST abnormalities. Echo monitoring showed in four cases mild and transient increase of LV diastolic/systolic diameter/volume without decrease of FS% or EF% below normal values: in two of them abnormalities of diastolic function (E/A mitral doppler ratio) were also recorded. We conclude that our protocol of HD-CTX administration does not cause myocardial cell damage as analyzed by serum cTnI levels, thus suggesting that myocyte membrane injury may not be the first direct mechanism of HD-CTX cardiotoxicity. ECG (ie QRS voltages ) and Echo (ie E/A ratio) monitoring leads us to hypothesize that slight interstitial edema with reduction of LV diastolic compliance may be initial signs of cardiac dysfunction in this clinical setting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.bmt.1703132 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!