The kinetics of hexadecane degradation were studied in four strains of Rhodococcus equi that did not produce biosurfactants. The aim was to analyse the characteristics of alkane uptake and their relevance to a mechanism of interfacial uptake. The kinetic studies involved continuous determination of degradation by electrolytic respirometry in a diphasic system where the hydrophobic phase was hexadecane or a solution of hexadecane in a non-toxic, non-biodegradable solvent, either 2,2,4,4,6,8,8-heptamethylnonane or silicone oil. The technique allowed large variations in interfacial area between the aqueous and hydrophobic phases. For the four strains, the kinetics obtained were reproducible and showed, in almost all cases, an initial short phase of exponential growth, followed by a long phase of linear growth. Specific growth rates during exponential growth varied amongst the strains from 0.11 to 0.20 h(-1) and were independent of interfacial area, in accordance with the very strong adsorption of bacterial cells at the interface of solvent and aqueous media. The degradation rates during linear growth did not increase with interfacial area but increased with efficiency of stirring. These characteristics can be explained by the formation of cellular flocs due to the hydrophobicity of the strains. These flocs were observed during growth on hexadecane in almost all conditions. In one case, with a non-flocculating culture, a kinetic pattern with a longer exponential phase, closer to that expected for simple interfacial uptake, was observed. The results show that strictly interfacial uptake, limited by floc formation (occurring at moderate and higher cell densities, and controlled by stirring efficiency) is a common pattern for growth on long-chain alkanes of micro-organisms that do not produce biosurfactants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/00221287-147-9-2537 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
The advent of autonomous nanomotors presents exciting opportunities for nanodrug delivery. However, significant potential remains for enhancing the asymmetry of nanomotors and advancing the development of second near-infrared (NIR-II) light-propelled nanomotors capable of operating within deep tissues. Herein, we developed a dual-ligand assisted anisotropic assembly strategy that enables precise regulation of the interfacial energy between selenium (Se) nanoparticle and periodic mesoporous organosilica (PMO).
View Article and Find Full Text PDFNanomicro Lett
January 2025
Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
Compared with Zn, the current mainly reported charge carrier for zinc hybrid capacitors, small-hydrated-sized and light-weight NH is expected as a better one to mediate cathodic interfacial electrochemical behaviors, yet has not been unraveled. Here we propose an NH-modulated cationic solvation strategy to optimize cathodic spatial charge distribution and achieve dynamic Zn/NH co-storage for boosting Zinc hybrid capacitors. Owing to the hierarchical cationic solvated structure in hybrid Zn(CFSO)-NHCFSO electrolyte, high-reactive Zn and small-hydrate-sized NH(HO) induce cathodic interfacial Helmholtz plane reconfiguration, thus effectively enhancing the spatial charge density to activate 20% capacity enhancement.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Electrical Engineering and Electronics, The University of Liverpool, Brownlow Hill, L69 3GJ, UK.
This work quantifies, through use of molecular dynamics (MD) simulations, the kinetic rates of physical surface processes occurring at a plasma-water interface. The probabilities of adsorption, absorption, desorption and scattering were computed for O, NO, NO, NO, OH, HO, HNO, HNO, and NO as they interact with the interface at three water temperatures: 298 K, 323 K, and 348 K. Species are categorised into the short-residence group (O, NO, NO, and NO) and the long-residence group (OH, HO, HNO, HNO, and NO) based on their mean surface residence time.
View Article and Find Full Text PDFBiomolecules
December 2024
Faculty of Chemical and Pharmaceutical Technologies and Biomedical Preparations, D. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, Moscow 125047, Russia.
Int J Biol Macromol
January 2025
Mechanical and Industrial Engineering Department, Indian Institute of Technology Roorkee, Uttarakhand 247667, India. Electronic address:
Plant-based macromolecules such as lignocellulosic fibers are one of the promising bio-resources to be utilized as reinforcement for developing sustainable composites. However, due to their hydrophilic nature and weak interfacial bonding with polymer matrices, these fibers are mostly incompatible with biopolymers. The current research endeavor explores the novel eco-friendly oxalic acid (CHO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!