Neural stem and precursor cells reside in the ventricular lining of the fetal forebrain, and may provide a cellular substrate for brain repair. To selectively identify and extract these cells, we infected dissociated fetal human brain cells with adenoviruses bearing the gene for green fluorescence protein (GFP), placed under the control of enhancer/promoters for two genes (nestin and musashi1) that are expressed in uncommitted neuroepithelial cells. The cells were then sorted by fluorescence-activated cell sorting (FACS) on the basis of E/nestin- or P/musashi1-driven GFP expression. Both P/musashi1:hGFP- and E/nestin:EGFP-sorted cells were multipotent: limiting dilution with clonal expansion as neurospheres, in tandem with retroviral lineage analysis and xenograft to E17 and P0-2 rat forebrain, revealed that each phenotype was able to both self-renew and co-generate neurons and glia. Thus, fluorescent genes placed under the control of early neural promoters allow neural stem cells to be specifically targeted, isolated, and substantially enriched from the fetal human brain.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nbt0901-843DOI Listing

Publication Analysis

Top Keywords

neural stem
12
fetal human
12
human brain
12
cells
8
stem cells
8
high-yield selection
4
selection extraction
4
extraction promoter-defined
4
promoter-defined phenotypes
4
neural
4

Similar Publications

The neural tube, the embryonic precursor to the vertebrate central nervous system, comprises distinct progenitor and neuronal domains, each with specific proliferation programs. In this study, we identified TMEM196, a novel transmembrane protein that plays a crucial role in regulating cell proliferation in the floor plate in chick embryos. TMEM196 is expressed in the floor plate, and its overexpression leads to reduced cell proliferation without affecting the pattern formation of the neural tube.

View Article and Find Full Text PDF

Directed collective cell migration is essential for morphogenesis, and chemical, electrical, mechanical and topological features have been shown to guide cell migration in vitro. Here we provide in vivo evidence showing that endogenous electric fields drive the directed collective cell migration of an embryonic stem cell population-the cephalic neural crest of Xenopus laevis. We demonstrate that the voltage-sensitive phosphatase 1 is a key component of the molecular mechanism, enabling neural crest cells to specifically transduce electric fields into a directional cue in vivo.

View Article and Find Full Text PDF

Multidimensional free shape-morphing flexible neuromorphic devices with regulation at arbitrary points.

Nat Commun

January 2025

Institute of Optoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China.

Biological neural systems seamlessly integrate perception and action, a feat not efficiently replicated in current physically separated designs of neural-imitating electronics. This segregation hinders coordination and functionality within the neuromorphic system. Here, we present a flexible device tailored for neuromorphic computation and muscle actuation.

View Article and Find Full Text PDF

Bipolar disorder (BD) involves altered reward processing and decision-making, with inconsistencies across studies. Here, we integrated hierarchical Bayesian modelling with magnetoencephalography (MEG) to characterise maladaptive belief updating in this condition. First, we determined if previously reported increased learning rates in BD stem from a heightened expectation of environmental changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!