Axon pathfinding relies on cellular signaling mediated by growth cone receptor proteins responding to ligands, or guidance cues, in the environment. Eph proteins are a family of receptor tyrosine kinases that govern axon pathway development, including retinal axon projections to CNS targets. Recent examination of EphB mutant mice, however, has shown that axon pathfinding within the retina to the optic disc is dependent on EphB receptors, but independent of their kinase activity. Here we show a function for EphB1, B2 and B3 receptor extracellular domains (ECDs) in inhibiting mouse retinal axons when presented either as substratum-bound proteins or as soluble proteins directly applied to growth cones via micropipettes. In substratum choice assays, retinal axons tended to avoid EphB-ECDs, while time-lapse microscopy showed that exposure to soluble EphB-ECD led to growth cone collapse or other inhibitory responses. These results demonstrate that, in addition to the conventional role of Eph proteins signaling as receptors, EphB receptor ECDs can also function in the opposite role as guidance cues to alter axon behavior. Furthermore, the data support a model in which dorsal retinal ganglion cell axons heading to the optic disc encounter a gradient of inhibitory EphB proteins which helps maintain tight axon fasciculation and prevents aberrant axon growth into ventral retina. In conclusion, development of neuronal connectivity may involve the combined activity of Eph proteins serving as guidance receptors and as axon guidance cues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/dev.128.15.3041 | DOI Listing |
Adv Drug Deliv Rev
January 2025
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 637459 Singapore; Critical Analytics for Manufacturing Personalized-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology, Campus for Research Excellence and Technological Enterprise 138602 Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University 308232 Singapore; School of Materials Science and Engineering 639798 Singapore; National Neuroscience Institute, 11 Jalan Tan Tock Seng 308433 Singapore. Electronic address:
Combinatorial treatments integrating cells and biomolecules within scaffolds have been investigated to address the multifactorial nature of spinal cord injury (SCI). Current regenerative treatments have been ineffective as they do not consider the spatial positions of various cell types to effectively form functional neural pathways. Emulating the complex heterogeneity of cells in the native spinal cord requires translating the existing biological understanding of spatial patterning in neural development, as well as the influence of biomolecule and mechanical patterning on regional specification and axonal regeneration, to engineer a scaffold for spinal cord regeneration.
View Article and Find Full Text PDFFront Digit Health
January 2025
Department of Information Engineering, University of Pisa, Pisa, Italy.
Wearable augmented reality in neurosurgery offers significant advantages by enabling the visualization of navigation information directly on the patient, seamlessly integrating virtual data with the real surgical field. This ergonomic approach can facilitate a more intuitive understanding of spatial relationships and guidance cues, potentially reducing cognitive load and enhancing the accuracy of surgical gestures by aligning critical information with the actual anatomy in real-time. This study evaluates the benefits of a novel AR platform, VOSTARS, by comparing its targeting accuracy to that of the gold-standard electromagnetic (EM) navigation system, Medtronic StealthStation S7.
View Article and Find Full Text PDFNanoscale
January 2025
State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
Liquid biopsies are expected to advance cancer management, and particularly physical cues are gaining attention for indicating tumorigenesis and metastasis. Atomic force microscopy (AFM) has become a standard and important tool for detecting the mechanical properties of single living cells, but studies of developing AFM-based methods to efficiently measure the mechanical properties of circulating tumor cells (CTCs) in liquid biopsy for clinical utility are still scarce. Herein, we present a proof-of-concept study based on the complementary combination of AFM and microfluidics, which allows label-free sorting of individual CTCs and subsequent automated AFM measurements of the mechanical properties of CTCs.
View Article and Find Full Text PDFTrends Neurosci
January 2025
Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA. Electronic address:
Despite accounting for only ~0.001% of all neurons in the human brain, midbrain dopaminergic neurons control numerous behaviors and are associated with many neuropsychiatric disorders that affect our physical and mental health. Dopaminergic neurons form various anatomically and functionally segregated pathways.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Key Laboratory of Tropical Translational Medicine and Ministry of Education, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China.
Axon guidance is a key event in neural circuit development that drives the correct targeting of axons to their targets through long distances and unique patterns. Exosomes, extracellular vesicles that are smaller than 100 nm, are secreted by most cell types in the brain. Regulation of cell-cell communication, neuroregeneration, and synapse formation by exosomes have been extensively studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!