A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Isofenphos induced metabolic changes in K562 myeloid blast cells. | LitMetric

Isofenphos induced metabolic changes in K562 myeloid blast cells.

Leuk Res

Harbor-UCLA Research and Education Institute, UCLA School of Medicine, 1124 West Carson Street RB1, Torrance, CA 90502, USA.

Published: October 2001

The organophosphate pesticide, isofenphos, is associated with human myeloid leukemia. In this study we describe metabolic changes in K562 myeloid blast cells from exposure to varying concentrations of isofenphos using the stable [1,2-13C(2)]glucose isotope as the single tracer and biological mass spectrometry. Isofenphos (1, 10, 100 microg/ml/72 h) treated K562 cells showed increases of 10.7, 33.8 and 39.7% in lactate production as well as a 14.2% increase (1 microg/ml/72 h) in 13C incorporation into nucleic acid ribose from glucose. Concomitantly, we observed a decrease in glucose oxidation and the synthesis of glutamate, palmitate and stearate from glucose. Our results demonstrate that this organophosphate pesticide exerts a leukemogenic effect by the recruitment of glucose carbons for nucleic acid synthesis thus promoting proliferation simultaneous with poor differentiation. The imbalanced metabolic phenotype with a severe defect in glucose oxidation, lipid and amino acid synthesis concurrent with de novo synthesis of nucleic acids in response to isofenphos treatment conforms to the invasive proliferating phenotype observed in TGF-beta treated lung epithelial carcinoma cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0145-2126(01)00043-1DOI Listing

Publication Analysis

Top Keywords

metabolic changes
8
changes k562
8
k562 myeloid
8
myeloid blast
8
blast cells
8
organophosphate pesticide
8
nucleic acid
8
glucose oxidation
8
acid synthesis
8
isofenphos
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!