Drug delivery to the central nervous system (CNS) is subject to the permeability limitations imposed by the blood-brain barrier (BBB). Several systems in vitro have been described to reproduce the physical and biochemical behavior of intact BBB, most of which lack the feature of the in vivo barrier. We developed a fully formed monolayer of RBE4.B immortalized rat brain microvessel endothelial cells (ECs), grown on top of polycarbonate filter inserts with cortical neuronal cells grown on the outside. Neurons induce ECs to synthesize and sort occludin to the cell periphery. Occludin localization is regulated by both compositions of the substratum and soluble signals released by cortical co-cultured neurons. The observed effects do not require strict physical contact among cells and neurons. To assess the physiological function of the barrier we examined the transendothelial transfer of three test compounds: dopamine, L-tryptophan and L-DOPA. Polycarbonate filter inserts, where ECs were co-cultured with neurons, were assumed as open two compartments vertical dynamic models. Permeation studies demonstrated that the ECs/neurons co-cultures possess permeability characteristics approaching those of a functional BBB: the system behaved as a selective interface that excludes dopamine permeation, yet permits L-tryptophan and L-DOPA to cross. The movement of test compounds from the donor to the acceptor compartment was observed at a distinct time from the start of co-culture. Transfer was determined using standard kinetic equations. Different performance was observed after 5 and 7 days of co-culture. After 5 days dopamine, L-tryptophan and L-DOPA passively permeate through the membrane as indicated by fittings with a first-order kinetic process equation. After 7 days of co-culture, occludin localizes at ECs periphery, dopamine does not cross the barrier to any further extent, while the transfer of L-tryptophan and L-DOPA fits well with a saturable Michaelis-Menten kinetic process, thus indicating the involvement of a specific carrier-mediated transport mechanism. Permeation studies confirmed that culture of ECs in the presence of neurons induces the characteristic permeability limitations of a functional BBB.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0168-3659(01)00431-xDOI Listing

Publication Analysis

Top Keywords

l-tryptophan l-dopa
16
test compounds
12
permeability limitations
8
polycarbonate filter
8
filter inserts
8
co-cultured neurons
8
dopamine l-tryptophan
8
permeation studies
8
functional bbb
8
days co-culture
8

Similar Publications

Kawasaki disease (KD) has emerged as the leading cause of acquired heart disease in children, primarily due to the absence of highly sensitive and specific biomarkers for early and accurate diagnosis. To address this issue, a simple and comprehensive targeted metabolomics method employing ultra high-performance liquid chromatography coupled with Q-TRAP mass spectrometry has been developed to identify new metabolite biomarkers for KD. This method enables the simultaneous quantification of 276 metabolites, covering 60 metabolic pathways, with a particular emphasis on metabolites relevant to KD.

View Article and Find Full Text PDF

Introduction: Parkinson's disease (PD) is commonly characterized by severe dopamine (DA) depletion within the substantia nigra (SN) leading to a myriad of motor and non-motor symptoms. One underappreciated and prevalent non-motor symptom, Parkinson's disease-associated psychosis (PDAP), significantly erodes patient and caregiver quality of life yet remains vastly understudied. While the gold standard pharmacotherapy for motor symptoms Levodopa (LD) is initially highly effective, it can lead to motor fluctuations like LD-induced dyskinesia (LID) and non-motor fluctuations such as intermittent PDAP.

View Article and Find Full Text PDF

This report presents a silver-mediated site-selective chalcogenation of tryptophan-containing peptides with various dichalcogenides (disulfides/diselenides) at room temperature in good to excellent yields. The significant features include broad substrate scope, functional group diversity, late-stage modification of drug molecules (Dopamine and Levodopa), and various valuable postsynthetic transformations under mild conditions.

View Article and Find Full Text PDF

Background: The serotonin (5-HT) system can manipulate the processing of exogenous L-DOPA in the DA-denervated striatum, resulting in the modulation of L-DOPA-induced dyskinesia (LID).

Objective: To characterize the effects of the serotonin precursor 5-hydroxy-tryptophan (5-HTP) or the serotonin transporter (SERT) inhibitor, Citalopram on L-DOPA-induced behavior, neurochemical signals, and underlying protein expressions in an animal model of Parkinson's disease.

Methods: MitoPark (MP) mice at 20 weeks of age, subjected to a 14-day administration of L-DOPA/Carbidopa, displayed dyskinesia, referred to as LID.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the enzyme Aromatic-L-amino-acid decarboxylase (AADC) from toads, crucial for synthesizing 5-Hydroxytryptamine (5-HT) and bufotenine in their secretions.
  • The researchers successfully cloned the full-length cDNA of AADC (BbgAADC) from the parotoid gland of Bufo bufo gargarizans and demonstrated optimal expression conditions in E. coli, highlighting specific enzymatic properties and substrate preferences.
  • Molecular docking studies identified key active sites for the enzyme's interaction with its cofactor pyridoxal-5'-phosphate (PLP) and substrate 5-hydroxytryptophan (5-
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!