Neurons containing the peptide hypocretin, also known as orexin, were recently implicated in the human sleep disorder narcolepsy. Hypocretin neurons are located only in the lateral hypothalamus from where they innervate virtually the entire brain and spinal cord. This peptide is believed to be involved in regulating feeding and wakefulness. However, to fully understand what other behaviors are regulated by this peptide it is necessary to investigate each hypocretin target site. In the present study, we focus on one hypocretin target site, the medial septum, where there is a dense collection of hypocretin-2 receptor-containing cells, and degenerating axons are present here in canines with narcolepsy [J. Neurosci. 19 (1999) 248]. We utilize a saporin toxin conjugated to the hypocretin receptor binding ligand, hypocretin-2, and find that when this toxin is injected into the medial septum, it lesions the parvalbumin and cholinergic neurons. We contrast the effects of the hypocretin-saporin with another saporin conjugated toxin, 192 IgG-saporin, that lesions only the cholinergic neurons in the basal forebrain. 192 IgG-saporin reduced theta activity, a finding consistent with previous reports [J. Neurophysiol. 79 (1998) 1633; Neurodegeneration 4 (1995) 61; Neuroscience 62 (1994) 1033]. However, hypocretin-saporin completely eliminated hippocampal theta activity by day 12, indicating that parvalbumin-containing cells in the medial septum generate theta. The daily amount of sleep and wakefulness were not different between hypocretin-saporin, 192 IgG-saporin, or saline-treated rats. The homeostatic response to 12 h prolonged wakefulness was also not affected in hypocretin-saporin lesioned rats. These findings suggest that hypocretin neurons could facilitate theta generation during episodes of purposeful behavior by activating GABAergic neurons in the MS/VDB. In this way, hypocretin, which is implicated in feeding, energy metabolism and wakefulness, serves to influence cognitive processes critical for the animal's survival.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-8993(01)02792-5DOI Listing

Publication Analysis

Top Keywords

medial septum
16
192 igg-saporin
12
effects hypocretin-saporin
8
hippocampal theta
8
hypocretin neurons
8
hypocretin target
8
target site
8
cholinergic neurons
8
theta activity
8
wakefulness hypocretin-saporin
8

Similar Publications

Role of the medial septum neurotensin receptor 1 in anxiety-like behaviors evoked by emotional stress.

Psychoneuroendocrinology

January 2025

Women and Children's Medical Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China. Electronic address:

Anxiety is one of the most common mental disorders. Neurotensin (NT) is a neuropeptide widely distributed in the central nervous system, involved in the pathophysiology of many neural and psychiatric disorders such as anxiety. However, the neural substrates mediating NT's effect on the regulation of anxiety have not been fully identified.

View Article and Find Full Text PDF

Maternally activated connections of the ventral lateral septum reveal input from the posterior intralaminar thalamus.

Brain Struct Funct

January 2025

Department of Physiology and Neurobiology, Laboratory of Molecular and Systems Neurobiology, Eötvös Loránd University, Budapest, Hungary.

The lateral septum (LS) demonstrates activation in response to pup exposure in mothers, and its lesions eliminate maternal behaviors suggesting it is part of the maternal brain circuitry. This study shows that the density of pup-activated neurons in the ventral subdivision of the LS (LSv) is nearly equivalent to that in the medial preoptic area (MPOA), the major regulatory site of maternal behavior in rat dams. However, when somatosensory inputs including suckling were not allowed, pup-activation was markedly reduced in the LSv.

View Article and Find Full Text PDF

Evaluation and Management of the External Nasal Valve.

Otolaryngol Clin North Am

January 2025

Department of Otolaryngology-Head and Neck Surgery, Division of Facial Plastic and Reconstructive Surgery, Henry Ford Hospital, 2799 West Grand Boulevard K-8, Detroit, MI 48202, USA; Department of Surgery, Michigan State University, 4660 South Hagadorn Road, Suite #620, East Lansing, MI 48823, USA; Wayne State University School of Medicine, 540 East Canfield Street, Detroit, MI 48201, USA.

The external nasal valve is the anatomic structure formed by the caudal septum, alar rim, medial crura of the lower lateral cartilage, and nasal sill at the level of the nasal vestibule. Evaluation of external nasal valve dysfunction is dependent upon a thorough history and physical examination. Symptoms and quality of life impact are the main drivers for patients to seek out clinical evaluation.

View Article and Find Full Text PDF

While hypothalamic kisspeptin (KP) neurons play well-established roles in the estrogen-dependent regulation of reproduction, little is known about extrahypothalamic KP-producing (KP) neurons of the lateral septum. As established previously, expression in this region is low and regulated by estrogen receptor- and GABA receptor-dependent mechanisms. Our present experiments on knock-in mice revealed that transgene expression in the LS begins at P33-36 in females and P40-45 in males and is stimulated by estrogen receptor signaling.

View Article and Find Full Text PDF

Post-traumatic stress disorder (PTSD) is characterized by anxiety, excessive fear, distress, and weakness as symptoms of a psychiatric disorder. However, the mechanism associated with its symptoms such as anxiety-like behaviors is not well understood. It is aimed to investigate the underlying mechanisms of the medial septum (MS)-medial habenula (MHb) neural circuit modulating the anxiety-like behaviors of PTSD mice through in vivo fiber photometry recording, optogenetics, behavioral testing by open-field and elevated plus maze, fluorescent gold retrograde tracer technology, and viral tracer technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!