Geminiviruses are DNA viruses that replicate and transcribe their genes in plant nuclei. They are ideal vectors for understanding plant gene function because of their ability to cause systemic silencing in new growth and ease of inoculation. We previously demonstrated DNA episome-mediated gene silencing from a bipartite geminivirus in Nicotiana benthamiana. Using an improved vector, we now show that extensive silencing of endogenous genes can be obtained using less than 100 bp of homologous sequence. Concomitant symptom development varied depending upon the target gene and insert size, with larger inserts producing milder symptoms. In situ hybridization of silenced tissue in attenuated infections demonstrated that silencing occurs in cells that lack detectable levels of viral DNA. A mutation confining the virus to vascular tissue produced extensive silencing in mesophyll tissue, further demonstrating that endogenous gene silencing can be separated from viral infection. We also show that two essential genes encoding a subunit of magnesium chelatase and proliferating cell nuclear antigen (PCNA) can be silenced simultaneously from different components of the same viral vector. Immunolocalization of silenced tissue showed that the PCNA protein was down-regulated throughout meristematic tissues. Our results demonstrate that geminivirus-derived vectors can be used to study genes involved in meristem function in intact plants.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1365-313x.2001.01080.xDOI Listing

Publication Analysis

Top Keywords

geminivirus-derived vectors
8
gene silencing
8
extensive silencing
8
silenced tissue
8
silencing
7
gene
5
silencing meristematic
4
meristematic gene
4
gene geminivirus-derived
4
vectors geminiviruses
4

Similar Publications

Rice () varieties are generated through breeding programs focused on local requirements. In Chile, the southernmost rice producer, rice productivity relies on the use and generation of temperate japonica germplasms, which need to be adapted to the intensifying effects of climate change. Advanced biotechnological tools can contribute to these breeding programs; new technologies associated with precision breeding, including gene editing, rely on procedures such as regeneration and gene transfer.

View Article and Find Full Text PDF

Geminivirus-Derived Vectors as Tools for Functional Genomics.

Front Microbiol

April 2022

Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.

A persistent issue in the agricultural sector worldwide is the intensive damage caused to crops by the geminivirus family of viruses. The diverse types of viruses, rapid virus evolution rate, and broad host range make this group of viruses one of the most devastating in nature, leading to millions of dollars' worth of crop damage. Geminiviruses have a small genome and can be either monopartite or bipartite, with or without satellites.

View Article and Find Full Text PDF

The woody nature of grapevine ( L.) has hindered the development of efficient gene editing strategies to improve this species. The lack of highly efficient gene transfer techniques, which, furthermore, are applied in multicellular explants such as somatic embryos, are additional technical handicaps to gene editing in the vine.

View Article and Find Full Text PDF

Background: In the last decades, replicating expression vectors based on plant geminivirus have been widely used for enhancing the efficiency of plant transient expression. By using the replicating expression vector derived from bean yellow dwarf virus and green fluorescent protein as a reporter, we investigated the effects of α-naphthalene acetic acid, gibberellins, and 6-benzyladenine, as three common plant growth regulators, on the plant biomass and efficiency of transient expression during the process of transient expression in Nicotiana benthamiana L. leaves.

View Article and Find Full Text PDF

Geminiviruses are plant-infecting viruses characterized by a single-stranded DNA (ssDNA) genome. Geminivirus-derived proteins are multifunctional and effective regulators in modulating the host cellular processes resulting in successful infection. Virus-host interactions result in changes in host gene expression patterns, reprogram plant signaling controls, disrupt central cellular metabolic pathways, impair plant's defense system, and effectively evade RNA silencing response leading to host susceptibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!