Fluorine encapsulation and stabilization of biologically relevant low-valence copper-oxo cores.

Inorg Chem

Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.

Published: September 2001

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic015529rDOI Listing

Publication Analysis

Top Keywords

fluorine encapsulation
4
encapsulation stabilization
4
stabilization biologically
4
biologically relevant
4
relevant low-valence
4
low-valence copper-oxo
4
copper-oxo cores
4
fluorine
1
stabilization
1
biologically
1

Similar Publications

Fluorinated chitosan mediated transepithelial delivery of sanguinarine-loaded platinum (IV) prodrug for intravesical instillation therapy of muscle-invasive bladder cancer.

J Control Release

December 2024

Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, China; Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China. Electronic address:

Cisplatin-based neoadjuvant chemotherapy is first-line strategy to inhibit progression and metastasis of muscle-invasive bladder cancer (MIBC). However, its clinical efficacy is often limited by drug resistance and severe systemic side effects, highlighting the urgent need for innovative therapeutic approaches. Despite advancements in cisplatin-based regimens, research on intravesical cisplatin delivery systems remains scarce.

View Article and Find Full Text PDF

Indirect Formation of Peptide Bonds as a Prelude to Ribosomal Transpeptidation.

J Am Chem Soc

December 2024

MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K.

The catalytic competency of the ribosome in extant protein biosynthesis is thought to arise primarily from two sources: an ability to precisely juxtapose the termini of two key substrates─3'-aminoacyl and -acyl-aminoacyl tRNAs─and an ability to ease direct transpeptidation by their desolvation and encapsulation. In the absence of ribosomal, or enzymatic, protection, however, these activated alkyl esters undergo efficient hydrolysis, while significant entropic barriers serve to hamper their intermolecular cross-aminolysis in bulk water. Given that the spontaneous emergence of a catalyst of comparable size and sophistication to the ribosome in a prebiotic RNA world would appear implausible, it is thus natural to ask how appreciable peptide formation could have occurred with such substrates in bulk water without the aid of advanced ribozymatic catalysis.

View Article and Find Full Text PDF

Fluoride Clusterfullerenes: Tuning Metal-Metal Bonding and Magnetic Properties via Single Fluorine Atom Doping.

J Am Chem Soc

December 2024

College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China.

Article Synopsis
  • Endohedral fullerenes are molecules that can encapsulate metal clusters, and this study introduces a new type called fluoride clusterfullerenes (FCFs).
  • The researchers successfully synthesized FCFs using various actinides, rare earth metals, and alkaline earth metals without needing extra modifications, revealing that adding a fluorine atom alters the metal-metal bonding significantly.
  • Their findings indicate that compounds like ThF@(7)-C and CaScF@(6)-C exhibit unique bonding interactions and promising magnetic properties, showcasing the potential of FCFs in future applications.
View Article and Find Full Text PDF

Spatially confined FeF cathodes in N-doped carbon nanotubes for lithium storage.

Chem Commun (Camb)

December 2024

Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China.

Herein, a N-doped carbon nanotube encapsulated FeF nanoparticle (FeF@N-CNTs) composite was developed pyrolysis and gas-phase fluorination strategies. The 3D carbon constrained scaffold enhances conversion reaction kinetics and effectively suppresses significant volume changes in the FeF cathode during cycling. Consequently, FeF@N-CNTs exhibits excellent rate capability and maintains a high discharge capacity of 110.

View Article and Find Full Text PDF

Peroxymonosulfate (PMS) activation by solid catalysts for ciprofloxacin (CIP) removal is a promising method for decontaminating wastewater. However, mainstream catalysts suffer from efficiency and durability issues due to mechanical fragility and structural instability. Here, we have developed a durable calcium alginate hydrogel encapsulating fluorinated cobalt oxyhydroxide (FCO/CAH), fabricated by a simple hydrogen-bond-assisted cross-linking reaction, to enhance PMS activation for complete CIP removal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!