A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The ribonuclease H activity of the reverse transcriptases of human immunodeficiency viruses type 1 and type 2 is affected by the thumb subdomain of the small protein subunits. | LitMetric

Retroviral reverse transcriptases (RTs) have both DNA polymerase and ribonuclease H (RNase H) activities. The RTs of HIV-1 and HIV-2 are heterodimers of p66/p51 and p68/p54 subunits, respectively. The smaller subunit lacks the C-terminal segment of the larger subunit (which is the RNase H domain). The structure of the DNA polymerase domain of HIV-1 RT resembles a right hand (with fingers, palm and thumb subdomains), linked to the RNase H domain via the connection subdomain. The RNase H activity of the Rod strain of HIV-2 RT is about tenfold lower than that of HIV-1 RT, while the DNA polymerase activity of these RTs is similar. A chimeric RT in which residues 227-427 (which constitute a small part of the palm and the entire thumb and connection subdomains) of the Rod strain of HIV-2 RT were replaced by the corresponding segment from HIV-1 RT, has an RNase H activity as high as HIV-1 RT (despite the fact that the RNase H domain is derived from HIV-2 RT). We analyzed the RNase H activity of wild-type HIV-2 RT from the D-194 strain and compared it with this activity of the RT from the Rod strain of HIV-2 and HIV-1 RT. The level of this activity of both HIV-2 RT strains was low; suggesting that low RNase H activity is a general property of HIV-2 isolates. The in vitro RNase H digestion pattern of the three wild-type RTs was indistinguishable, despite the difference in the level of RNase H activity. We constructed new chimeric HIV-1/HIV-2 RTs, in which protein segments and/or subunits were exchanged. The DNA polymerase activity of the parental HIV-1 and HIV-2 RTs was similar; as expected, the specific activity of the polymerases of all the hybrid RTs were also similar. However, the RNase H specific activity of the chimeric RTs was either high (like HIV-1 RT) or low (like HIV-2 RT). The origin of the thumb subdomain in the small subunit of the chimeric RTs (residues 244-322) determines the level of the RNase H activity. The strand-transfer activity of the chimeric RTs is also affected by the thumb subdomain of the small subunit; transfer was much more efficient if this subdomain was derived from HIV-1 RT. The data can be explained from the three-dimensional structure of HIV-1 RT. The thumb of the smaller subunit contacts the RNase H domain; it is through these contacts that the thumb affects the level of the RNase H activity of RT.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jmbi.2001.4904DOI Listing

Publication Analysis

Top Keywords

rnase activity
28
dna polymerase
16
rnase domain
16
rnase
14
activity
14
thumb subdomain
12
subdomain small
12
rod strain
12
strain hiv-2
12
level rnase
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!