When proceeding normally, embryonic morphogenesis begins with germ layer formation through the process of gastrulation. Each primordial germ layer gives rise to a particular set of lineages. Until recently, it was considered that fate switches between germ layers were impossible. In the last two or three years however, a fair number of such switches have been described (Table I), the most spectacular of which entails the differentiation of neural stem cells into various derivatives. This unexpected plasticity opens important prospects for cell therapy. Stem cells, which are the cells that display this plasticity, are defined by the two properties of self renewal and pluripotency. They are set apart during ontogeny and are responsible for maintaining the homeostasis of a tissue. This notion, first established in the case of hematopoietic stem cells was later extended to other fast renewing cells, such as those in the intestinal epithelium or epidermis, and more recently to cells reputedly non-renewable, i.e. neurons. A new strategy has been described, which has the interesting feature that it can be applied to the isolation of stem cells from various lineages. It consists in sorting out cells on the basis of the efflux of Hoechst 33342 dye (Goodell et al., 1996). When a cell suspension stained with this dye is examined under two distinct wave lengths, a "side population" (SP), characterized by weak fluorescence, can be identified and sorted out. The dye efflux property of these cells is due to the activity of the mdr (multidrug resistance) gene, which encodes a protein responsible for the building of a canal which serves to extrude toxins from the cells. A means of distinguishing a truly multipotent stem cell from a progenitor committed to a specific lineage has been reported. This consists in the expression of the Pax7 gene. Pax7-/- mouse muscles have no satellite cells, i.e. they miss the cells normally responsible for the regeneration of muscle. In contrast they do have an SP population. These SP cells are incapable of differentiating into muscle, but give rise to 10 times more hematopoietic colonies, when cloned in vitro, than SP cells from wild type muscle do. Thus Pax7 appears to be a commitment gene, in the absence of which stem cells cannot become specified to the muscle lineage. As a conclusion, this review emphasizes various features of the recent findings: 1) the unexpected plasticity uncovered in recent years is restricted to the stem cells of each tissue; 2) the switch in phenotype has to be "forced" on these stem cells by drastic experimental conditions enforced in the host: often sublethal irradiation is superimposed on a genetic deficiency. Progress in this field, concerning both conceptual and applied aspects, will require the identification of the factors characterizing the niches which promote integration and fate switches of stem cells, probably a combination of growth factors and intercellular interactions. Finally a key issue, before any therapeutical applications can be considered, is how to control the proliferation of transplanted stem cells in their new environment.
Download full-text PDF |
Source |
---|
BMC Biol
January 2025
Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
Background: Uveal melanoma (UM) is the most common intraocular tumor in adults, arises either de novo from normal choroidal melanocytes (NCMs) or from pre-existing nevi that stem from NCMs and are thought to harbor UM-initiating mutations, most commonly in GNAQ or GNA11. However, there are no commercially available NCM cell lines, nor is there a detailed protocol for developing an oncogene-mutated CM line (MutCM) to study UM development. This study aimed to establish and characterize premalignant CM models from human donor eyes to recapitulate the cell populations at the origin of UM.
View Article and Find Full Text PDFBMC Biol
January 2025
Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany.
Background: Glioblastoma multiforme (GBM) is characterized by its cellular complexity, with a microenvironment consisting of diverse cell types, including oligodendrocyte precursor cells (OPCs) and neoplastic CD133 + radial glia-like cells. This study focuses on exploring the distinct cellular transitions in GBM, emphasizing the role of alternative polyadenylation (APA) in modulating microRNA-binding and post-transcriptional regulation.
Results: Our research identified unique APA profiles that signify the transitional phases between neoplastic cells and OPCs, underscoring the importance of APA in cellular identity and transformation in GBM.
BMC Vet Res
January 2025
Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok, 10330, Thailand.
Background: Small extracellular vesicles (sEVs) derived from mesenchymal stem cells (MSCs) are recognized for their therapeutic potential in immune modulation and tissue repair, especially in veterinary medicine. This study introduces an innovative sequential stimulation (IVES) technique, involving low-oxygen gas mixture preconditioning using in vitro fertilization gas (IVFG) and direct current electrical stimulation (ES20), to enhance the anti-inflammatory properties of sEVs from canine adipose-derived MSCs (cAD-MSCs). Initial steps involved isolation and comprehensive characterization of cAD-MSCs, including morphology, gene expression, and differentiation potentials, alongside validation of the electrical stimulation protocol.
View Article and Find Full Text PDFBMC Genomics
January 2025
Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China.
Background: Spermatogonia are essential for the continual production of sperm and regeneration of the entire spermatogenic lineage after injury. In mammals, spermatogonia are formed in the neonatal testis from prospermatogonia (also termed gonocytes), which are established from primordial germ cells during fetal development. Currently, the molecular regulation of the prospermatogonial to spermatogonia transition is not fully understood.
View Article and Find Full Text PDFMed Oncol
January 2025
Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
The heterogeneity and evolution of tumors remain significant obstacles in cancer treatment, contributing to both therapy resistance and relapse. Mesenchymal stem/stromal cells (MSCs) are multipotent stromal cells within the tumor microenvironment that interact with tumor cells through various mechanisms, including cell fusion. While previous research has largely focused on the effects of MSC-tumor cell fusion on tumor proliferation, migration, and tumorigenicity, emerging evidence indicates that its role in tumor maintenance, evolution, and recurrence, particularly under stress conditions, may be even more pivotal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!