Recent anatomical studies revealed that the entopeduncular nucleus of the rat receives GABAergic inputs from both the neostriatum and the globus pallidus. The present study was undertaken to reveal the physiological features of these inputs using the intracellular recording method in rat brain slice preparations. Most of the entopeduncular nucleus neurons generated repetitive firing without spike accommodation with intracellular current stimulation and thus were classified as Type-I. A small number of neurons were classified as Type-II since they generated spikes with pronounced accommodation. Most of the Type-I, but none of Type-II, entopeduncular nucleus neurons exhibited monosynaptic GABAergic inhibitory postsynaptic potentials (IPSPs) after stimulation of the neostriatum and the globus pallidus. Neostriatal stimulation induced long latency IPSPs while pallidal stimulation induced long latency IPSPs compounded with short latency IPSPs. The IPSPs were mediated by GABA(A) receptors. The unitary IPSPs to striatal stimulation were small while those to pallidal stimulation were large in amplitude and able to reset ongoing rhythmic firing. The short latency IPSPs induced by pallidal stimulation reversed at a somatic membrane potential that was a few millivolts more depolarized than the long latency IPSPs, suggesting that the striatal inputs were evoked in more distal portions of the neurons than the pallidal inputs. Repetitive activation of these inputs resulted in a poor amplitude summation but a prolongation of the duration of the IPSPs. The results of the present study indicate that the pallidal projection to the entopeduncular nucleus is physiologically significant and that the neostriatum and the globus pallidus play important roles in controlling the activity of the entopeduncular nucleus, although in different ways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0306-4522(01)00231-7 | DOI Listing |
Curr Biol
August 2024
Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; UK Dementia Research Institute, Imperial College London, London SW7 2AZ, UK. Electronic address:
Rapid eye movement (REM) sleep has been hypothesized to promote emotional resilience, but any neuronal circuits mediating this have not been identified. We find that in mice, somatostatin (Som) neurons in the entopeduncular nucleus (EP)/internal globus pallidus are predominantly active during REM sleep. This unique REM activity is both necessary and sufficient for maintaining normal REM sleep.
View Article and Find Full Text PDFThe basal ganglia (BG) are an evolutionarily conserved and phylogenetically old set of sub-cortical nuclei that guide action selection, evaluation, and reinforcement. The entopeduncular nucleus (EP) is a major BG output nucleus that contains a population of GABA/glutamate cotransmitting neurons (EP ) that specifically target the lateral habenula (LHb) and whose function in behavior remains mysterious. Here we use a probabilistic switching task that requires an animal to maintain flexible relationships between action selection and evaluation to examine when and how GABA/glutamate cotransmitting neurons contribute to behavior.
View Article and Find Full Text PDFFront Cell Neurosci
April 2024
Department of Neurology, University of Rostock, Rostock, Germany.
Introduction: Deep brain stimulation (DBS) is a highly effective treatment option in Parkinson's disease. However, the underlying mechanisms of action, particularly effects on neuronal plasticity, remain enigmatic. Adult neurogenesis in the subventricular zone-olfactory bulb (SVZ-OB) axis and in the dentate gyrus (DG) has been linked to various non-motor symptoms in PD, e.
View Article and Find Full Text PDFJ Chem Neuroanat
July 2024
Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Movement Disorder Clinic, Division of Neurology, Department of Neurosciences, McGill University Health Centre, Montreal, QC, Canada. Electronic address:
L-3,4-dihydroxyphenylalanine (L-DOPA) is the treatment of choice for Parkinson's disease (PD) motor symptoms, but its chronic use is hindered by complications such as dyskinesia. Pre-clinical studies discovered that activation of metabotropic glutamate type 2 and 3 (mGlu) receptors alleviates L-DOPA-induced dyskinesia. To gain mechanistic insight into the anti-dyskinetic activity of mGlu activation, we performed autoradiographic binding with [H]-LY-341,495 in brain sections from L-DOPA-treated 6-hydroxydopamine (6-OHDA)-lesioned rats that developed mild or severe dyskinesia, as well as L-DOPA-untreated 6-OHDA-lesioned and sham-lesioned animals.
View Article and Find Full Text PDFDis Model Mech
May 2024
Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan.
Dystonia is thought to arise from abnormalities in the motor loop of the basal ganglia; however, there is an ongoing debate regarding cerebellar involvement. We adopted an established cerebellar dystonia mouse model by injecting ouabain to examine the contribution of the cerebellum. Initially, we examined whether the entopeduncular nucleus (EPN), substantia nigra pars reticulata (SNr), globus pallidus externus (GPe) and striatal neurons were activated in the model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!