Complete loss of N-glycosylation is lethal in both yeast and mammals. Substantial deficiencies in some rate-limiting biosynthetic steps cause human congenital disorders of glycosylation (CDG). Patients have a range of clinical problems including variable degrees of mental retardation, liver dysfunction, and intestinal disorders. Over 60 mutations in phosphomannomutase (encoded by PMM2) diminish activity and cause CDG-Ia. The severe mutation R141H in PMM2 is lethal when homozygous, but heterozygous in about 1/70 Northern Europeans. Another disorder, CDG-Ic, is caused by mutations in ALG6, an alpha 1,3glucosyl transferase used for lipid-linked precursor synthesis, yet some function-compromising mutations occur at a high frequency in this gene also. Maintenance of seemingly deleterious mutations implies a selective advantage or positive heterosis. One possible explanation for this is that production of infective viruses such as hepatitis virus B and C, or others that rely heavily on host N-glycosylation, is substantially inhibited when only a tiny fraction of their coat proteins is misglycosylated. In contrast, this reduced glycosylation does not affect the host. Prevalent functional mutations in rate-limiting glycosylation steps could provide some resistance to viral infections, but the cost of this insurance is CDG. A balanced glycosylation level attempts to accommodate these competing agendas. By assessing the occurrence of a series of N-glycosylation-compromising alleles in multi-genic diseases, it may be possible to determine whether impaired glycosylation is a risk factor or a major determinant underlying their pathology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0300-9084(01)01292-5 | DOI Listing |
Thromb J
January 2025
Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
The REAADS VWF activity assay is often assumed to be specific for the A1 domain, the portion of VWF that binds platelet GPIbα. We tested this assay on the A1A2A3 region of VWF with each domain expressed independently of one another and together in combination as a tri-domain. The monoclonal antibody used in this assay is found to be insensitive to the single A domains and does not recognize free A1 domains as it is often assumed.
View Article and Find Full Text PDFBMC Ophthalmol
January 2025
College of Optometry, University of Houston College of Optometry, 4401 Martin Luther King Blvd, 77204-2020, Houston, TX, USA.
Background: This study evaluates retinal oxygen saturation and vessel density within the macula and correlates these measures in controls and subjects with type 2 diabetes (DM) with (DMR) and without (DMnR) retinopathy. Changes in retinal oxygen saturation have not been evaluated regionally in diabetic patients.
Methods: Data from seventy subjects (28 controls, 26 DMnR, and 16 DMR were analyzed.
Sci China Life Sci
January 2025
National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University; CSU-Sinocare Research Center for Nutrition and Metabolic Health, Xiangya School of Public Health, Central South University, Furong Laboratory, Changsha, 410011, China.
Despite considerable research underscoring the importance of carbohydrate intake in relation to the risk of type 2 diabetes (T2D), a comprehensive assessment of this relationship is currently lacking. We aimed to examine the associations of various types and food sources of dietary carbohydrate intake with the risk of T2D, to evaluate potential effect modification by other factors, including genetic susceptibility, and to explore the potential mediators for such associations. The present study included 161,872 participants of the UK Biobank who were free of prevalent cancer, cardiovascular disease, or diabetes, and had at least one validated 24-h dietary recall assessment.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Sichuan University, State Key Laboratory of Biotherapy, CHINA.
Herein we report a cobalt-catalyzed hydroglycosylation of terminal alkynes, employing bench-stable ortho-iodobiphenyl (oIB) substituted sulfides as glycosyl donors. This reaction occurs with high stereo- and regioselectivity to afford E-configured vinyl α-C-glycosides, a class of compounds nontrivial to access by previous methods. The use of a bis(oxazoline) ligand with bulky side chains is critical for the high selectivities observed.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China; Translational Glycomics Research Center, Fudan Zhangjiang Institute, Shanghai, China. Electronic address:
Aberrant sialylated glycosylation in the tumor microenvironment is a novel immune suppression pathway, which has garnered significant attention as a targetable glycoimmune checkpoint for cancer immunotherapy to address the dilemma of existing therapies. However, rational drug design and in-depth mechanistic studies are urgently required for tumor sialic acid to become valuable glycoimmune targets. In this study, we explored the positive correlation of PD-L1 and sialyltransferase expression in clinical colorectal cancer tissues and identified their mutual regulation effects in macrophages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!