Background: The origin of the lactic acid that acidifies the vagina is not well established. It is widely accepted that during times of high oestrogen (during the neonatal period and again during a woman's reproductive years) large amounts of glycogen are deposited in the vaginal epithelium and that the glycogen is anaerobically metabolized to lactic acid. What is not established is whether lactic acid is primarily produced by vaginal bacteria or by vaginal epithelial cells. Human cells can make only L-lactate, while bacteria can produce both D- and L-, thus the D- to L-lactate ratio can indicate the relative contribution of bacterially derived lactic acid.
Methods: In this study, we used chiral HPLC to examine the percentages of D- and L-lactate in vaginal secretions, in primary cultures of bacteria from these vaginal secretions, and in cultures of lactobacillus isolates of vaginal origin.
Results: We found that in most vaginal secretion samples, >50% of the lactic acid was the D-isoform (mean 55%, range 6-75%, n = 14).
Conclusions: Our results thus support the hypothesis that vaginal bacteria, not epithelial cells, are the primary source of lactic acid in the vagina.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/humrep/16.9.1809 | DOI Listing |
Sci Rep
January 2025
Department of Critical Care Medicine, Tongde Hospital of Zhejiang Province, #234 Gucui Road, Hangzhou, 310012, Zhejiang, People's Republic of China.
The intestinal barrier function is a critical defense mechanism in the human body, serving as both the primary target and initiating organ in cases of sepsis. Preserving the integrity of this barrier is essential for preventing complications and diseases, including sepsis and mortality. Despite this importance, the impact of resveratrol on intestinal barrier function remains unclear.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.
Altitude training has been widely adopted. This study aimed to establish a mice model to determine the time point for achieving the best endurance at the lowland. C57BL/6 and BALB/c male mice were used to establish a mice model of hypoxic training with normoxic training mice, hypoxic mice, and normoxic mice as controls.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China. Electronic address:
The in-situ-produced dextrans (DXs) could effectively enhance the viscosity of rice protein (RP) yogurt, but the reason for this improvement has not been elucidated. This study aims to reveal the mechanism underlying the viscosity improvement of RP yogurt by the presence of in-situ DXs. DXs synthesized in RP yogurts under different optimum conditions were purified and fully characterized.
View Article and Find Full Text PDFTalanta
December 2024
NanoBiosensors and Biodevices Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India. Electronic address:
This work presents a robust strategy for quantifying overlapping electrochemical signatures originating from complex mixtures and real human plasma samples using nickel-based electrochemical sensors and machine learning (ML). This strategy enables the detection of a panel of analytes without being limited by the selectivity of the transducer material and leaving accommodation of interference analysis to ML models. Here, we fabricated a non-enzymatic electrochemical sensor for L-lactic acid detection in complex mixtures and human plasma samples using nickel oxide (NiO) nanoparticle-modified glassy carbon electrodes (GCE).
View Article and Find Full Text PDFBiomaterials
January 2025
Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai, 200011, China. Electronic address:
Addressing the concurrent repair of cartilage and subchondral bone presents a significant challenge yet is crucial for the effective treatment of severe joint injuries. This study introduces a novel biodegradable composite scaffold, integrating piezoelectric poly-l-lactic acid (pPLLA) with strontium-enriched silicate bioceramic (SrSiO). This innovative scaffold continually releases bioactive Sr and SiO ions while generating an electrical charge under low-intensity pulsed ultrasound (LIPUS) stimulation, a clinically recognized method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!