Myotonic dystrophy 1 is caused by the expansion of a CTG trinucleotide repeat on chromosome 19q13.3. The repeat lies in the 3' untranslated region of the myotonic dystrophy protein kinase gene (DMPK), and it has been hypothesised that the expansion alters the expression levels of DMPK and/or its neighbouring genes, DMWD and SIX5. Published data remain controversial, partly due to the mixed cell populations found in most tissues examined. We have microdissected human skeletal muscle biopsies from myotonic dystrophy 1 patients and controls and analysed gene expression at this locus for type I and type IIA fibres, using quantitative real-time reverse transcription-polymerase chain reaction. Levels of DMPK expression were specifically decreased in the type IIA fibres of myotonic dystrophy patients, below the levels found in controls. This suggests that DMPK expression is altered in this disease, suggesting significant pathological consequences.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/bbrc.2001.5516 | DOI Listing |
JACC Clin Electrophysiol
January 2025
Section of Cardiac Electrophysiology, Cardiovascular Medicine Division, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Background: Literature on the prevalence and management of atrial arrhythmias in patients with myotonic muscular dystrophy type 1 (MMD1) or myotonic muscular dystrophy type 2 (MMD2) is limited.
Objectives: This study sought to describe incidence, prevalence, and predictors of atrial fibrillation (AF) and atrial flutter (AFL) in a contemporary cohort of patients with myotonic muscular dystrophy (MMD).
Methods: Associations between patient factors and incident AF/AFL were analyzed in patients with MMD referred for routine electrophysiology evaluation between January 2013 and September 2023.
J Clin Invest
January 2025
Center for Inherited Myology Research, Virginia Commonwealth University, Richmond, United States of America.
Background: Myotonic dystrophy type 1 (DM1) is a multisystemic, CTG repeat expansion disorder characterized by a slow, progressive decline in skeletal muscle function. A biomarker correlating RNA mis-splicing, the core pathogenic disease mechanism, and muscle performance is crucial for assessing response to disease-modifying interventions. We evaluated the Myotonic Dystrophy Splice Index (SI), a composite RNA splicing biomarker incorporating 22 disease-specific events, as a potential biomarker of DM1 muscle weakness.
View Article and Find Full Text PDFCommun Med (Lond)
January 2025
Dyne Therapeutics Inc, Waltham, MA, USA.
Background: We developed the FORCE platform to overcome limitations of oligonucleotide delivery to muscle and enable their applicability to neuromuscular disorders. The platform consists of an antigen-binding fragment, highly specific for the human transferrin receptor 1 (TfR1), conjugated to an oligonucleotide via a cleavable valine-citrulline linker. Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder caused by expanded CUG triplets in the DMPK RNA, which sequester splicing proteins in the nucleus, lead to spliceopathy, and drive disease progression.
View Article and Find Full Text PDFGeroscience
January 2025
Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA.
Sarcopenia, the pathological age-related loss of muscle mass and strength, contributes to physical decline, frailty, and diminished healthspan. The impact of sarcopenia is expected to rise as the aging population grows, and treatments remain limited. Therefore, novel approaches for enhancing physical function and strength in older adults are desperately needed.
View Article and Find Full Text PDFNat Med
January 2025
Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK.
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease with the age at which characteristic symptoms manifest strongly influenced by inherited HTT CAG length. Somatic CAG expansion occurs throughout life and understanding the impact of somatic expansion on neurodegeneration is key to developing therapeutic targets. In 57 HD gene expanded (HDGE) individuals, ~23 years before their predicted clinical motor diagnosis, no significant decline in clinical, cognitive or neuropsychiatric function was observed over 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!