Little information is available on the systemic effects of Bacillus thuringiensis toxins in the hemocoel of insects. In order to test whether B. thuringiensis-activated toxins elicit a toxic response in the hemocoel, we measured the effect of intrahemocoelic injections of several Cry1 toxins on the food intake, growth, and survival of Lymantria dispar (Lepidoptera) and Neobellieria bullata (Diptera) larvae. Injection of Cry1C was highly toxic to the Lymantria larvae and resulted in the complete inhibition of food intake, growth arrest, and death in a dose-dependent manner. Cry1Aa and Cry1Ab (5 microg/0.2 g [fresh weight] [g fresh wt]) also affected growth and food intake but were less toxic than Cry1C (0.5 microg/0.2 g fresh wt). Cry1E and Cry1Ac (5 microg/0.2 g fresh wt) had no toxic effect upon injection. Cry1C was also highly toxic to N. bullata larvae upon injection. Injection of 5 microg/0.2 g fresh wt resulted in rapid paralysis, followed by hemocytic melanization and death. Lower concentrations delayed pupariation or gave rise to malformation of the puparium. Finally, Cry1C was toxic to brain cells of Lymantria in vitro. The addition of Cry1C (20 microg/ml) to primary cultures of Lymantria brain cells resulted in rapid lysis of the cultured neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC93110PMC
http://dx.doi.org/10.1128/AEM.67.9.3923-3927.2001DOI Listing

Publication Analysis

Top Keywords

brain cells
12
food intake
12
microg/02 fresh
12
bacillus thuringiensis
8
cry1 toxins
8
cells lymantria
8
lymantria dispar
8
intake growth
8
larvae injection
8
injection cry1c
8

Similar Publications

Modulation of Intestinal Inflammation and Protection of Dopaminergic Neurons in Parkinson's Disease Mice through a Probiotic Formulation Targeting NLRP3 Inflammasome.

J Neuroimmune Pharmacol

January 2025

Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, PR China.

Emerging evidence highlights the significance of peripheral inflammation in the pathogenesis of Parkinson's disease (PD) and suggests the gut as a viable therapeutic target. This study aimed to explore the neuroprotective effects of the probiotic formulation VSL#3 and its underlying mechanism in a PD mouse model induced by MPTP. Following MPTP administration, the striatal levels of dopamine and its metabolites, as along with the survival rate of dopaminergic neurons in the substantia nigra, were significantly reduced in PD mice.

View Article and Find Full Text PDF

Evidence for Multiple Independent Expansions of Fox Gene Families Within Flatworms.

J Mol Evol

January 2025

Faculty of Biology, Institute of Evolutionary Biology, University of Warsaw, Ul. Żwirki I Wigury 101, 02-089, Warsaw, Poland.

Expansion and losses of gene families are important drivers of molecular evolution. A recent survey of Fox genes in flatworms revealed that this superfamily of multifunctional transcription factors, present in all animals, underwent extensive losses and expansions during platyhelminth evolution. In this paper, I analyzed Fox gene complement in four additional species of platyhelminths, that represent early-branching lineages in the flatworm phylogeny: catenulids (Stenostomum brevipharyngium and Stenostomum leucops) and macrostomorphs (Macrostomum hystrix and Macrostomum cliftonense).

View Article and Find Full Text PDF

Neuronal Plasma Membranes as Supramolecular Assemblies for Biological Memory.

Langmuir

January 2025

Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, United States.

Biological memory is the ability to develop, retain, and retrieve information over time. Currently, it is widely accepted that memories are stored in synapses (i.e.

View Article and Find Full Text PDF

Interplay of Light, Melatonin, and Circadian Genes in Skin Pigmentation Regulation.

Pigment Cell Melanoma Res

January 2025

Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.

Circadian regulation of skin pigmentation is essential for thermoregulation, ultraviolet (UV) protection, and synchronization of skin cell renewal. This regulation involves both cell-autonomous photic responses and non-cell-autonomous hormonal control, particularly through melatonin produced in a light-sensitive manner. Photosensitive opsins, cryptochromes, and melatonin regulate circadian rhythms in skin pigment cells.

View Article and Find Full Text PDF

Microgravity-induced cardiac remodeling and dysfunction present significant challenges to long-term spaceflight, highlighting the urgent need to elucidate the underlying molecular mechanisms and develop precise countermeasures. Previous studies have outlined the important role of miRNAs in cardiovascular disease progression, with miR-199a-3p playing a crucial role in myocardial injury repair and the maintenance of cardiac function. However, the specific role and expression pattern of miR-199a-3p in microgravity-induced cardiac remodeling remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!