Effects of transforming growth factors-alpha and -beta on proliferation and apoptosis of rat theca-interstitial cells.

J Endocrinol

Yale University School of Medicine, Department of Obstetrics and Gynecology, 333 Cedar Street, New Haven, Connecticut 06520-8063, USA.

Published: September 2001

Ovarian development, follicular growth and atresia require mechanisms regulating proliferation and death of ovarian cells including theca-interstitial (T-I) cells. Transforming growth factors-alpha and -beta (TGF-alpha and TGF-beta) are well recognized local modulators of T-I function. This study was performed to evaluate the effects of TGF-alpha and TGF-beta on ovarian T-I cell proliferation, differentiation and apoptosis. T-I cells from immature Sprague-Dawley rats were purified and incubated in chemically defined media. Proliferation was assessed by [3H]thymidine incorporation assay and by cell counting. Steroidogenically active cells were identified histochemically by detection of 3beta-hydroxysteroid dehydrogenase (3beta-HSD) activity. DNA was extracted and apoptosis was identified by detection of internucleosomal DNA cleavage producing the characteristic 'ladder pattern' of low-molecular weight (LMW) DNA following agarose gel electrophoresis. Quantification of apoptosis was carried out with the aid of 3'-end labeling of DNA fragments with [32P]-dideoxy-ATP. TGF-alpha and TGF-beta stimulated [3H]thymidine incorporation by 2.2- to 3.1-fold and 1.7- to 3.4-fold respectively (P<0.005). A combination of TGF-alpha and TGF-beta produced a synergistic increase in DNA synthesis by 6.7-fold (at 1 ng/ml of each TGF-alpha and TGF-beta; P<0.001) and tenfold (at 10 ng/ml of each TGF-alpha and TGF-beta; P<0.001). Cell counting revealed that TGF-alpha increased the total number of cells 2.8-fold and TGF-beta 2.8-fold. The combination of TGF-alpha and TGF-beta increased the total cell count 3.2-fold, compared with control (P<0.05). The percentage of the steroidogenically active cells was 37+/-9% (mean+/-s.e.m. ) in the control cultures, 50+/-5% in the presence of TGF-alpha, 42+/-8% in the presence of TGF-beta, and 47+/-13% in the presence of both TGF-alpha and TGF-beta. TGF-alpha decreased apoptosis by 63+/-14% (P=0.02) while TGF-beta had no statistically significant effect. TGF-alpha in combination with TGF-beta produced the greatest inhibition of apoptosis by 73+/-8% (P=0.01). These findings demonstrate that TGF-alpha and -beta stimulate proliferation of both steroidogenically active and inactive T-I cells. Furthermore, TGF-alpha alone and in combination with TGF-beta protects T-I cells from apoptotic death. These effects of TGFs may be important in physiologic maintenance of ovarian mesenchymal growth and homeostasis as well as in pathophysiologic conditions associated with excessive growth of the T-I compartment, such as polycystic ovary syndrome.

Download full-text PDF

Source
http://dx.doi.org/10.1677/joe.0.1700639DOI Listing

Publication Analysis

Top Keywords

tgf-alpha tgf-beta
12
transforming growth
8
growth factors-alpha
8
factors-alpha -beta
8
t-i cells
8
[3h]thymidine incorporation
8
cells
5
effects transforming
4
proliferation
4
-beta proliferation
4

Similar Publications

Integrated metabolomics and mass spectrometry imaging analysis reveal the efficacy and mechanism of Huangkui capsule on type 2 diabetic nephropathy.

Phytomedicine

January 2025

State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; Department of Nephrology, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China. Electronic address:

Background: Huangkui capsule (HKC), a Chinese patent medicine, is clinically used for treating diabetic nephropathy. However, the core disease-specific biomarkers and targets of type 2 diabetic nephropathy (T2DN) and the therapeutic mechanism of HKC are not fully elucidated.

Purpose: This study aimed to investigate the therapeutic effects and underlying molecular mechanisms of HKC for T2DN.

View Article and Find Full Text PDF

Engineered extracellular vesicles for TGF-β encapsulation as a therapeutic strategy against LPS-induced systemic inflammation.

Int Immunopharmacol

January 2025

National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China. Electronic address:

Inflammation underlies a wide variety of physiological and pathological processes, the Lipopolysaccharide (LPS)-induced inflammation model is widely recognized as a classical inflammatory paradigm, while Transforming growth factor-β (TGF-β) serves as a potent immunosuppressant capable of inhibiting immune responses and mitigating inflammation. However, its in vivo instability and the high cost associated with purification have imposed limitations on its clinical application. Therefore, we propose a therapeutic strategy for genetically modifying extracellular vesicles (HEVs) derived from HEK-293 T cells to incorporate TGF-β which holds potential for mitigating LPS-induced inflammation.

View Article and Find Full Text PDF

Myasthenia gravis (MG) is a T cell-dependent, B cell-mediated disorder strongly associated with antigen presentation by dendritic cells (DCs). In MG, mucosal tolerance is linked to increased expression of TGF-β mRNA in monocytes. Additionally, monocytic myeloid-derived suppressor cells (M-MDSCs) exhibit negative immunomodulatory effects by suppressing autoreactive T and B cells.

View Article and Find Full Text PDF

Background: Traumatic brain injury (TBI) is a leading cause of mortality worldwide and often results in substantial cognitive, motor, and psychological impairments, triggering oxidative stress, neuroinflammation, and neurodegeneration. This study examined the neuroprotective effects of azithromycin (AZI) in TBI.

Methods: TBI was induced in rats using the weight-drop method.

View Article and Find Full Text PDF

Background: (-)-Fenchone is a bicyclic monoterpene present in the plant species Mill, L. (tuja), and (lavender). These plants have therapeutic value in the treatment of intestinal disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!