Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The objective of the present study is to determine the passive transverse mechanical properties of skeletal muscle. Compression experiments were performed on four rat tibialis anterior muscles. To assess the stress- and strain-distributions in the muscle during the experiment, a plane stress model of the cross section was developed for each muscle. The incompressible viscoelastic Ogden model was used to describe the passive muscle behaviour. The four material parameters were determined by fitting calculated indentation forces on measured indentation forces. The elastic parameters, mu and alpha, were 15.6+/-5.4 kPa and 21.4+/-5.7, respectively. The viscoelastic parameters, delta and tau, were 0.549+/-0.056 and 6.01+/-0.42 s. When applying the estimated material parameters in a three-dimensional finite element model, the measured behaviour can be accurately simulated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0021-9290(01)00083-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!