Controlling culture dynamics for the expansion of hematopoietic stem cells.

J Hematother Stem Cell Res

Institute of Biomaterials and Biomedical Engineering, Department of Chemical Engineering, University of Toronto, Toronto, Ontario, Canada.

Published: August 2001

AI Article Synopsis

Article Abstract

The ex vivo expansion of hematopoietic stem cells (HSCs) is the subject of intense commercial and academic interest due to the potential of HSCs to be a renewable source of material for cellular therapeutics. Unfortunately, because methodologies have not yet been developed to grow clinically relevant numbers of HSCs (or their derivatives) consistently, the potential of this technology is limited. Manipulation of the in vitro culture microenvironment, primarily through cytokine supplementation, has been the predominant approach in studies attempting to expand primary human HSC numbers in vitro. While promising results have been obtained, it is becoming clear that novel methods must be developed before cellular therapies using these stem cells can become routine. Ideally, bioprocesses must be designed to target specifically the growth of stem cell populations while incorporating positive and negative feedback from potentially dynamic mature and maturing cell populations. The product of these culture systems should consist of not only HSCs, but also of cells that allow the engraftment of HSCs and, ideally, cells responsible for the immediate or accelerated functional support of patients. Development of such "designer transplants" will require combining optimal culture conditions capable of amplifying HSC numbers with novel approaches for finely controlling the number, functional capabilities, and characteristics of potentially therapeutic cells in these very complex cell culture systems.

Download full-text PDF

Source
http://dx.doi.org/10.1089/15258160152509091DOI Listing

Publication Analysis

Top Keywords

stem cells
12
expansion hematopoietic
8
hematopoietic stem
8
hsc numbers
8
cell populations
8
culture systems
8
cells
6
hscs
5
controlling culture
4
culture dynamics
4

Similar Publications

Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.

View Article and Find Full Text PDF

Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.

View Article and Find Full Text PDF

∆-Tetrahydrocannabinol Increases Growth Factor Release by Cultured Adipose Stem Cells and Adipose Tissue in vivo.

Tissue Eng Regen Med

January 2025

Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.

Background: Because of its biocompatibility and its soft and dynamic nature, the grafting of adipose tissue is regarded an ideal technique for soft-tissue repair. The adipose stem cells (ASCs) contribute significantly to the regenerative potential of adipose tissue, because they can differentiate into adipocytes and release growth factors for tissue repair and neovascularization to facilitate tissue survival. The present study tested the effect of administering a chronic low dose of ∆-tetrahydrocannabinol (THC) on these regenerative properties, in vitro and in vivo.

View Article and Find Full Text PDF

IL-7 secreted by keratinocytes induces melanogenesis via c-kit/MAPK signaling pathway in Melan-a melanocytes.

Arch Dermatol Res

January 2025

Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin, 17104, Republic of Korea.

Abnormal melanin synthesis within melanocytes can result in pigmentary skin disorders. Although pigmentation alterations associated with inflammation are frequently observed, the precise reason for this clinical observation is still unknown. More specifically, although many cytokines are known to be critical for inflammatory skin processes, it is unclear how they affect epidermal melanocyte function.

View Article and Find Full Text PDF

This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!