The p73 protein shares structural and functional similarities with the tumour-suppressor p53, but its role in neoplastic transformation is unknown. Alternative splicing leads to the expression of at least nine p73 C-terminal mRNA splice variants (alpha, beta, gamma, delta, epsilon, zeta, eta, eta1, theta). In this survey, we analyse the expression of p73 by real-time quantitative RT-PCR, its known C-terminal variants with an RT-PCR-Southern technique and by Western blot in samples of 51 patients with B-CLL, normal B lymphocytes from eight individuals, and five haematopoetic cell lines. p73alpha protein expression positively correlated with higher risk B-CLL stages (P = 0.046). Total p73 mRNA expression was higher (P = 0.01) and p73alpha protein more frequently detected (P = 0.008) in B-CLL compared with normal CD19+-B-lymphocytes. p73 C-terminal mRNA variants were expressed both in B-CLL and in normal B-lymphocytes, but their expression was biased since the gamma (P = 0.041), the theta (P < 0.001), and the eta variant (P = 0.033) prevailed in normal B-lymphocytes. In summary, we conclude that the accumulation of p73, the expression pattern of particular p73 variants and its link to progression may play a distinct role in the molecular pathology B-CLL.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1011153206003DOI Listing

Publication Analysis

Top Keywords

expression p73
8
p73 c-terminal
8
c-terminal mrna
8
b-cll normal
8
p73alpha protein
8
normal b-lymphocytes
8
p73
7
expression
6
b-cll
5
overexpression p73
4

Similar Publications

Progress in the Study of TAp73 and Sperm Apoptosis.

Cell Biochem Funct

January 2025

Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, Anhui, China.

The study of the mechanism of oligoasthenospermia, which is a major cause of male infertility, has been the focus of research in the field of male reproduction. TAp73, a member of the p53 family of oncogenes, is endowed with tumor-suppressing activity due to its structural and functional homology with p53. It has been found that TAp73, plays a key role in spermatogenesis and maintaining male reproduction.

View Article and Find Full Text PDF

Chlorophyllides repress gain-of-function p53 mutated HNSCC cell proliferation via activation of p73 and repression of p53 aggregation in vitro and in vivo.

Biochim Biophys Acta Mol Basis Dis

January 2025

Department of Medical Science and Biotechnology, I-Shou University, Kaohsiung City 82445, Taiwan. Electronic address:

Head and neck squamous cell carcinoma (HNSCC) cells have a high p53 mutation rate, but there were rare reported about the p53 gain of function through the prion-like aggregated form in p53 mutated HNSCC cells. Thioflavin T (ThT) is used to stain prion-like proteins in cells. Previously, we found that ThT and p53 staining were co-localized in HNSCC cells (Detroit 562 cells) with homozygous p53 R175H mutation.

View Article and Find Full Text PDF

The mechanism by which DNA-damage affects self-renewal and pluripotency remains unclear. DNA damage and repair mechanisms have been largely elucidated in mutated cancer cells or simple eukaryotes, making valid interpretations on early development difficult. Here we show the impact of ionizing irradiation on the maintenance and early differentiation of mouse embryonic stem cells (ESCs).

View Article and Find Full Text PDF
Article Synopsis
  • - TP73, part of the TP53 gene family, produces different protein variants (TAp73 and ΔTAp73) with opposing functions through various genetic mechanisms.
  • - Newly developed antibodies for these p73 variants reveal that TAp73 is present in multiciliated epithelial cells, while ΔTAp73 marks non-proliferative basal cells in squamous epithelium.
  • - In cervical squamous cell carcinomas, p73α is commonly expressed and linked to lower tumor grades, whereas TAp73 appears less frequently and does not show significant associations with cancer characteristics.
View Article and Find Full Text PDF

BRD4 sustains p63 transcriptional program in keratinocytes.

Biol Direct

November 2024

Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy.

Here, we investigated the potential interaction between bromodomain-containing protein 4 (BRD4), an established epigenetic modulator and transcriptional coactivator, and p63, a member of the p53 transcription factor family, essential for epithelial development and skin homeostasis. Our protein-protein interaction assays demonstrated a strong and conserved physical interaction between BRD4 and the p53 family members-p63, p73, and p53-suggesting a shared binding region among these proteins. While the role of BRD4 in cancer development through its interaction with p53 has been explored, the effects of BRD4 and Bromodomain and Extra Terminal (BET) inhibitors in non-transformed cells, such as keratinocytes, remain largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!