During amniote evolution, an early divergence occurred about 300 million years ago between the reptilian lines leading to the appearance of birds (anapsids) and mammals (synapsids). The different functional requirements of these vertebrate groups have involved divergent evolution of their brains. Even superficial examination reveals major anatomical differences between mammalian and avian brains, such as extensive development of the optic lobes and cerebellum in birds and a highly developed cortex in mammals. It has been nearly impossible to identify avian homologs of some mammalian brain regions by standard morphological criteria. This has long frustrated efforts at clarifying hypotheses regarding the anatomical location, field size, and regulation of brain functions shared between these two classes, despite the certainty that the principles of neurobiology apply equally at the cellular level in both groups. In an effort to remove this barrier, we have sought markers of common function that despite apparent anatomical dissimilarity, can allow recognition of homologous brain structures. We illustrate here how comparative analysis of the distribution of the steroid-metabolizing enzyme estrogen synthetase (aromatase) may help to understand the differences and similarities in the limbic system and hypothalamus of birds and mammals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/153537020222600802 | DOI Listing |
Cancer Treat Rev
January 2025
Department of Oncology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden. Electronic address:
Importance: Endocrine treatments, such as Tamoxifen (TAM) and/or Aromatase inhibitors (AI), are the adjuvant therapy of choice for hormone-receptor positive breast cancer. These agents are associated with menopausal symptoms, adversely affecting drug compliance. Topical estrogen (TE) has been proposed for symptom management, given its' local application and presumed reduced bioavailability, however its oncological safety remains uncertain.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Internal Medicine, Division of Hematology and Oncology, Jeonbuk National University Hospital, Jeonbuk National University Medical School, Jeonju, Republic of Korea.
Rationale: Aggressive angiomyxoma (AAM) is an exceptionally rare mesenchymal tumor that predominantly manifests in the female genital organs during the reproductive age. Its rarity alone makes it a fascinating subject for study. The diagnosis of AAM necessitates differentiation from other benign or mesenchymal tumors and can be confirmed through immunohistochemistry (IHC) staining.
View Article and Find Full Text PDFCurr Oncol
January 2025
Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada.
Introduction: CDK4/6 inhibitors in combination with aromatase inhibitors (AIs) are the standard first-line treatment for hormone receptor-positive (HR+), HER2-negative (HER2-) metastatic breast cancer. Landmark trials have demonstrated a comparable progression-free survival (PFS) across CDK4/6 inhibitors, but the overall survival (OS) outcomes have varied. This study aimed to evaluate the real-world PFS and OS for palbociclib and ribociclib when combined with AIs in patients with HR+/HER2- advanced breast cancer.
View Article and Find Full Text PDFCurr Oncol
January 2025
Population Health and Optimal Health Practices Axis, CHU de Québec-Université Laval Research Center, Hôpital du Saint-Sacrement, 1050 Chemin Ste-Foy, Québec, QC G1S 4L8, Canada.
Background: Adjuvant endocrine therapy (AET) is prescribed for 5-10 years to women with hormone-sensitive breast cancer to prevent recurrence. However, a significant proportion of women do not adhere to AET. We developed SOIE, a one-year program designed to enhance the AET experience and adherence.
View Article and Find Full Text PDFSci Rep
January 2025
Division of Hematology and Oncology, University of California, 1450 3rd Street, San Francisco, CA, 94143, USA.
For individuals at high risk of developing breast cancer, interventions to mitigate this risk include surgical removal of their breasts and ovaries or five years treatment with the anti-estrogen tamoxifen or aromatase inhibitors. We hypothesized that a silicone based anti-estrogen-eluting implant placed within the breast would provide the risk reduction benefit of hormonal therapy, but without the adverse effects that limit compliance. To this end, we demonstrate that when placed adjacent to mammary tissue in the 7,12-dimethylbenz[a]anthracene-induced rat breast cancer model a fulvestrant-eluting implant delays breast cancer with minimal systemic exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!