A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhanced IkappaB kinase activity is responsible for the augmented activity of NF-kappaB in human head and neck carcinoma cells. | LitMetric

Enhanced IkappaB kinase activity is responsible for the augmented activity of NF-kappaB in human head and neck carcinoma cells.

Cancer Lett

Second Department of Oral and Maxillofacial Surgery, Tokushima University School of Dentistry, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan.

Published: October 2001

The nuclear transcription factor kappaB (NF-kappaB) plays an important role in the development and progression of cancers. However, the mechanism by which cancer cells in the head and neck region acquire high NF-kappaB activity has not yet been clarified. In this study, we examined the NF-kappaB binding activity and the expression of the signal-transduction-related proteins of NF-kappaB in head and neck carcinoma cell lines. These cancer cells showed significantly higher NF-kappaB binding activity than normal oral epithelial and salivary gland cells. We also demonstrated the increased phosphorylation and degradation of IkappaB-alpha protein in cancer cells. Thus, enhanced NF-kappaB activity in cancer cells is attributable to the rapid phosphorylation and degradation of IkappaB-alpha protein. To further elucidate the mechanism involved in this phenomenon, we analyzed both the expression levels of upstream kinases (IkappaB kinase- (IKK-) alpha, IKK-beta, IKK-gamma, and NF-kappaB-inducing kinase (NIK)) and the IKK activity in cells. Although there was no significant difference in the expression levels of NIK, IKK-beta, or IKK-gamma in cancer cell lines compared to those in normal cells, increased expression of IKK-alpha protein was observed in cancer cells. In addition, IKK activity was significantly augmented in cancer cells as compared to normal cells. Thus, our results suggest that enhanced NF-kappaB activity in head and neck cancer cells may be due to the augmentation of IKK activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0304-3835(01)00611-5DOI Listing

Publication Analysis

Top Keywords

cancer cells
28
head neck
16
cells
12
nf-kappab activity
12
ikk activity
12
activity
10
nf-kappab
8
neck carcinoma
8
cancer
8
nf-kappab binding
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!