Desmosterolosis is a rare autosomal recessive disorder characterized by multiple congenital anomalies. Patients with desmosterolosis have elevated levels of the cholesterol precursor desmosterol, in plasma, tissue, and cultured cells; this abnormality suggests a deficiency of the enzyme 3beta-hydroxysterol Delta24-reductase (DHCR24), which, in cholesterol biosynthesis, catalyzes the reduction of the Delta24 double bond of sterol intermediates. We identified the human DHCR24 cDNA, by the similarity between the encoded protein and a recently characterized plant enzyme--DWF1/DIM, from Arabidopsis thaliana--catalyzing a different but partially similar reaction in steroid/sterol biosynthesis in plants. Heterologous expression, in the yeast Saccharomyces cerevisiae, of the DHCR24 cDNA, followed by enzyme-activity measurements, confirmed that it encodes DHCR24. The encoded DHCR24 protein has a calculated molecular weight of 60.1 kD, contains a potential N-terminal secretory-signal sequence as well as at least one putative transmembrane helix, and is a member of a recently defined family of flavin adenine dinucleotide (FAD)-dependent oxidoreductases. Conversion of desmosterol to cholesterol by DHCR24 in vitro is strictly dependent on reduced nicotinamide adenine dinucleotide phosphate and is increased twofold by the addition of FAD to the assay. The corresponding gene, DHCR24, was identified by database searching, spans approximately 46.4 kb, is localized to chromosome 1p31.1-p33, and comprises nine exons and eight introns. Sequence analysis of DHCR24 in two patients with desmosterolosis revealed four different missense mutations, which were shown, by functional expression, in yeast, of the patient alleles, to be disease causing. Our data demonstrate that desmosterolosis is a cholesterol-biosynthesis disorder caused by mutations in DHCR24.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1226055PMC
http://dx.doi.org/10.1086/323473DOI Listing

Publication Analysis

Top Keywords

dhcr24
9
3beta-hydroxysterol delta24-reductase
8
autosomal recessive
8
recessive disorder
8
cholesterol biosynthesis
8
patients desmosterolosis
8
dhcr24 cdna
8
expression yeast
8
adenine dinucleotide
8
desmosterolosis
5

Similar Publications

Cellular Cholesterol Loss Impairs Synaptic Vesicle Mobility via the CAMK2/Synapsin-1 Signaling Pathway.

Front Biosci (Landmark Ed)

January 2025

Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.

Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.

View Article and Find Full Text PDF

Background: Non-small-cell lung cancer (NSCLC) remains a deadly malignancy worldwide. Resistance to cisplatin (DDP) is a significant obstacle that limits the therapeutic efficacy in NSCLC patients.

Objectives: This study investigated the role and mechanism of 24-dehydrocholesterol reductase (DHCR24) in DDP resistance in NSCLC cells.

View Article and Find Full Text PDF

Objective: The objective of this study was to explore the possibility of treating heart failure in rats by delivering mRNA of 24-dehydrocholesterol reductase (DHCR24) into the body through lipid nanoparticles (LNPs).

Methods: We established a heart failure rat model using doxorubicin. The experiment was divided into blank, model, mRNA stock solution cardiac injection, mRNA stock solution intravenous injection, LNP-mRNA stock solution cardiac injection, and LNP-mRNA stock solution intravenous injection groups.

View Article and Find Full Text PDF

Objective: The study aims to construct a prognostic signature to detect the molecular interaction between the fatty acid metabolism and the progression of endometrial cancer.

Materials And Methods: A total of 309 fatty acid metabolism relative genes were analyzed in the endometrial cancer cohort from The Cancer Genome Atlas. Dataset GSE216872 was applied for external validation.

View Article and Find Full Text PDF

Introduction: Brain cholesterol relies on de novo biosynthesis and is crucial for brain development. Cholesterol synthesis is a complex series of reactions that involves more than twenty enzymes to reach the final product and generates a large number of intermediate sterols along two alternate pathways. This is a highly regulated and oxygen-dependent process and thus sensitive to hypoxia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!