A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Store-operated calcium influx and stimulation of steroidogenesis in rat Leydig cells: role of Ca(2+)-activated K(+) channels. | LitMetric

This study evaluates the role of internal calcium store depletion in the activation of ionic fluxes and steroidogenesis in adult rat Leydig cells. Thapsigargin and cyclopiazonic acid, two inhibitors of Ca(2+)-adenosine triphosphatase of internal Ca(2+) stores induced a dose-dependent rise in intracellular Ca(2+) concentrations following kinetics that would not be expected if the calcium rise was dependent only on internal calcium store depletion, but it was in keeping with the presence of calcium influx from the external medium. In fact, chelation of external calcium with EGTA during the plateau phase reduced the intracellular calcium concentration to basal levels. When added in calcium-free medium, thapsigargin and cyclopiazonic acid still induced a rise in the intracellular calcium concentration that was transient, and when calcium was added back to the medium, a rapid and sustained intracellular calcium increase was observed. Thapsigargin and cyclopiazonic acid induced a dose-dependent rise in testosterone secretion in the presence and absence of calcium in the external medium, although in calcium-free medium this stimulatory effect was lower. Leydig cell plasma membrane potential monitoring demonstrated that thapsigargin and cyclopiazonic acid induced first a rapid hyperpolarization, followed by a sustained depolarization phase that was reversed by the addition of the calcium-chelating agent EGTA. In the absence of calcium in the external medium the first phase of hyperpolarization was still present, but it was not followed by plasma membrane depolarization but by the slow return of plasma membrane potential to resting levels. The readdition of calcium to the external medium induced the rapid plasma membrane depolarization. Plasma membrane hyperpolarization was completely abolished by Leydig cell preincubation with the K(+) channel blockers tetraethylammonium and charybdotoxin. Leydig cell preincubation with K(+) channel inhibitors reduced the thapsigargin-stimulated Ca(2+) influx from the external medium and testosterone secretion. These results suggest that internal Ca(2+) stores depletion in rat Leydig cells induces a rise in intracellular Ca(2+), determining important plasma membrane potential variations that influence testosterone secretion.

Download full-text PDF

Source
http://dx.doi.org/10.1210/endo.142.9.8373DOI Listing

Publication Analysis

Top Keywords

plasma membrane
24
external medium
20
thapsigargin cyclopiazonic
16
cyclopiazonic acid
16
rat leydig
12
leydig cells
12
calcium
12
rise intracellular
12
intracellular calcium
12
acid induced
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!